分析 由等比數(shù)列的通項(xiàng)公式逐一驗(yàn)證三個(gè)命題得答案.
解答 解:(1)∵數(shù)列{an}為等比數(shù)列,設(shè)首項(xiàng)為a1,公比為q,
∴a52=$({a}_{1}{q}^{4})^{2}={{a}_{1}}^{2}{q}^{8}$,a3•a7=$({a}_{1}{q}^{2})({a}_{1}{q}^{6})$=${{a}_{1}}^{2}{q}^{8}$,則a52=a3•a7 .
又${a}_{1}{a}_{9}={a}_{1}•{a}_{1}{q}^{8}$,則a52=a1•a9 ;
(2)an2=$({a}_{1}{q}^{n-1})^{2}={{a}_{1}}^{2}{q}^{2n-2}$,an-1•an+1=$({a}_{1}{q}^{n-2})({a}_{1}{q}^{n})={{a}_{1}}^{2}{q}^{2n-2}$,∴an2=an-1•an+1.
由此可得:等比數(shù)列中,除首項(xiàng)和末項(xiàng)外,其它任何一項(xiàng)都是與它相鄰兩項(xiàng)的等比中項(xiàng);
(3)an2=$({a}_{1}{q}^{n-1})^{2}={{a}_{1}}^{2}{q}^{2n-2}$,an-k•an+k=$({a}_{1}{q}^{n-k-1})({a}_{1}{q}^{n+k-1})={{a}_{1}}^{2}{q}^{2n-2}$,∴an2=an-k•an+k .
由此可得:等比數(shù)列中,除首項(xiàng)和末項(xiàng)外,其它任何一項(xiàng)都是與它等距離兩項(xiàng)的等比中項(xiàng)
點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),熟記以上結(jié)論對(duì)于求解等比數(shù)列問(wèn)題尤為重要,該題是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com