0<α<
π
2
,g(x)=sin(2x+
π
4
+α)
是偶函數(shù),則α的值為
 
分析:依題意,可知
π
4
+α=kπ+
π
2
(k∈Z),又0<α<
π
2
,從而可求α的值.
解答:解:∵g(x)=sin(2x+
π
4
+α)是偶函數(shù),
π
4
+α=kπ+
π
2
(k∈Z),
∴α=kπ+
π
4
(k∈Z),又0<α<
π
2
,
∴α=
π
4

故答案為:
π
4
點(diǎn)評(píng):本題考查正弦函數(shù)的奇偶性,考查正弦函數(shù)與余弦函數(shù)的相互轉(zhuǎn)化,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2cosx(sinx+cosx)-1將函數(shù)f(x)的圖象向左平移a個(gè)單位,得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)f(x)的最小正周期;
(2)若0<a<
π2
,且g(x)是偶函數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
x
+lnx-1.
(1)求f(x)的單調(diào)區(qū)間.
(2)若a>0,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(3)若0<a<e,g(x)=-
2e
x
-lnx.?x1∈(0,e],x2∈(0,e],使g(x1)=f(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(1)用定義證明函數(shù)f(x)在(-∞,+∞)上為減函數(shù);

(2)若x∈[1,2],求函數(shù)f(x)的值域;

(3)若且當(dāng)x∈[1,2]時(shí)g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
a
x
+lnx-1.
(1)求f(x)的單調(diào)區(qū)間.
(2)若a>0,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(3)若0<a<e,g(x)=-
2e
x
-lnx.?x1∈(0,e],x2∈(0,e],使g(x1)=f(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:3年高考2年模擬:4.2 三角函數(shù)的圖象和性質(zhì)及三角恒等變換(5)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=2cosx(sinx+cosx)-1將函數(shù)f(x)的圖象向左平移a個(gè)單位,得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)f(x)的最小正周期;
(2)若0<a<,且g(x)是偶函數(shù),求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案