已知函數(shù).
(1)當(dāng)時(shí),指出的單調(diào)遞減區(qū)間和奇偶性(不需說(shuō)明理由);
(2)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(3)若對(duì)任何不等式恒成立,求實(shí)數(shù)的取值范圍。
(1)遞減區(qū)間為,函數(shù)既不是奇函數(shù)也不是偶函數(shù);(2)或;(3).
解析試題分析:(1)時(shí),作出函數(shù)的圖象,如下圖,即可得出結(jié)論.
(2)實(shí)際上就是解方程,只不過(guò)在解題時(shí),首先要分類(lèi)討論(分和),其次還要注意的是,否則會(huì)得出錯(cuò)誤結(jié)果;本題也可由求出方程的正的零點(diǎn)(這可利用(1)的結(jié)論很快解決),然后令等于這些值,就可求出;(3)不等式恒成立求參數(shù)取值范圍問(wèn)題,一般把問(wèn)題轉(zhuǎn)化如轉(zhuǎn)化為求函數(shù)的值域(或最值)或者利用不等式的性質(zhì),本題參數(shù)可以分離,在時(shí),不論取何值,不等式都成立,在時(shí),可轉(zhuǎn)化為,即,下面只要求出的最大值和的最小值.
試題解析:1)當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為(2分)
函數(shù)既不是奇函數(shù)也不是偶函數(shù)(4分)
(2)當(dāng),(1分)
由得 (2分)
即(4分)
解得 (5分)
所以或 (6分)
(3)當(dāng)時(shí),取任意實(shí)數(shù),不等式恒成立,
故只需考慮,此時(shí)原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/b/dfg62.png" style="vertical-align:middle;" /> (1分)
即
故 (2分)
又函數(shù)在上單調(diào)遞增, (3分)
函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,(4分)
;(5分)
所以,即實(shí)數(shù)的取值范圍是 (6分)
考點(diǎn):(1)函數(shù)單調(diào)區(qū)間與奇偶性;(2)解超越方程;(3)不等式恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
近日,國(guó)家經(jīng)貿(mào)委發(fā)出了關(guān)于深入開(kāi)展增產(chǎn)節(jié)約運(yùn)動(dòng),大力增產(chǎn)市場(chǎng)適銷(xiāo)對(duì)路產(chǎn)品的通知,并發(fā)布了當(dāng)前國(guó)內(nèi)市場(chǎng)185種適銷(xiāo)工業(yè)品和42種滯銷(xiāo)產(chǎn)品的參考目錄.為此,一公司舉行某產(chǎn)品的促銷(xiāo)活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷(xiāo)售量P萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與促銷(xiāo)費(fèi)用x萬(wàn)元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本10+2P萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為元/件.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷(xiāo)費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(xiàn)(x)=
(1)若f(-1)=0,且函數(shù)f(x) ≥0的對(duì)任意x屬于一切實(shí)數(shù)成立,求F(x)的表達(dá)式;
(2)在 (1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(Ⅰ) 若函數(shù)在上為增函數(shù), 求實(shí)數(shù)的取值范圍;
(Ⅱ) 求證:當(dāng)且時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),兩個(gè)函數(shù),的圖像關(guān)于直線對(duì)稱(chēng).
(1)求實(shí)數(shù)滿足的關(guān)系式;
(2)當(dāng)取何值時(shí),函數(shù)有且只有一個(gè)零點(diǎn);
(3)當(dāng)時(shí),在上解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)對(duì)任意,都有,當(dāng)時(shí),
(1)求證:是奇函數(shù);
(2)試問(wèn):在時(shí) ,是否有最大值?如果有,求出最大值,如果沒(méi)有,說(shuō)明理由.
(3)解關(guān)于x的不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),若函數(shù)為奇函數(shù),求的值.
(2)若,有唯一實(shí)數(shù)解,求的取值范圍.
(3)若,則是否存在實(shí)數(shù),使得函數(shù)的定義域和值域都為。若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是實(shí)數(shù),
(1)試確定的值,使成立;
(2)求證:不論為何實(shí)數(shù),均為增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)定義在上的奇函數(shù)
(1).求值;(4分)
(2).若在上單調(diào)遞增,且,求實(shí)數(shù)的取值范圍.(6分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com