已知x,y滿足,且目標(biāo)函數(shù)z=-x+2y的最大值為5,最小值為-1,則的值為( )
A.-5
B.-4
C.-3
D.-2
【答案】分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=-x+2y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.
解答:解:由題意得:
目標(biāo)函數(shù)z=-x+2y在點(diǎn)B取得最大值為5,
在點(diǎn)A處取得最小值為-1,
∴A(1,3),B(3,1),
∴直線AB的方程是:x+y-4=0,
∴則 =-2.
故選D.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京四中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知x,y滿足,且目標(biāo)函數(shù)z=3x+y的最小值是5,則z的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京四中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知x,y滿足,且目標(biāo)函數(shù)z=3x+y的最小值是5,則z的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知x,y滿足,且目標(biāo)函數(shù)z=3x+y的最小值是5,則z的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省梅州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

已知x,y滿足,且目標(biāo)函數(shù)z=3x+y的最小值為5,則c的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省梅州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

已知x,y滿足,且目標(biāo)函數(shù)z=3x+y的最小值為5,則c的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案