設(shè)函數(shù)f(x)=數(shù)學(xué)公式(a∈R)是R上的奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若m∈R+,且滿足log數(shù)學(xué)公式>log3數(shù)學(xué)公式,求x的取值范圍.

解:(Ⅰ)∵函數(shù)f(x)=,f(-x)==,
根據(jù)f(x)為奇函數(shù),∴f(-x)=-f(x),
即-=,即 1+a•2x=-2x-a,解得 a=-1. 
(Ⅱ)由 >log3,得 ,
,即 .  
當(dāng)-1<1-m<1,即0<m<2時,1-m<x<1;
當(dāng)1-m≤-1,即m≥2時,-1<x<1.
分析:(Ⅰ)根據(jù)函數(shù)f(x)求得f(-x),再由f(-x)=-f(x),求得a的值. 
(Ⅱ)由 >log3,得 ,
化簡可得 .分-1<1-m<1,和當(dāng)1-m≤-1兩種情況,分別求得x的范圍.
點評:本題主要考查函數(shù)的奇偶性的應(yīng)用,對數(shù)函數(shù)的單調(diào)性和特殊點,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,
屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=T•f(x)成立.
(1)函數(shù)f(x)=x是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=ax(a>0,且a≠1)的圖象與y=x的圖象有公共點,證明:f(x)=ax∈M;
(3)若函數(shù)f(x)=sinkx∈M,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=logax(a>0且a≠1),若f(x1•x2•…•x2009)=8,則f(x12)+f(x22)+…+f(x20082)+f(x20092)的值等于
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南通三模)設(shè)函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.
(1)若f′(
13
)
=0,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求證:當(dāng)0≤x≤1時,|f'(x)|≤max{f'(0),f'(1)}.(注:max{a,b}表示a,b中的最大值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)設(shè)函數(shù)f(x)=x3-4x+a(0<a<2)有三個零點x1、x2、x3,且x1<x2<x3,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0.b,c∈R.
(1)計算f′(
1
3
);
(2)若x=
1
3
為函數(shù)f(x)的一個極值點,求f(x)的單調(diào)區(qū)間;
(3)設(shè)M表示f′(0)與f′(1)兩個數(shù)中的最大值,求證:當(dāng)0≤x≤1時,|f′(x)|≤M.

查看答案和解析>>

同步練習(xí)冊答案