由坐標(biāo)原點O向函數(shù)y=x3-3x2的圖象W引切線l1,切點為P1(x1,y1)(P1,O不重合),再由點P1引W的切線l2,切點為P2(x2,y2)(P1,P2不重合),…,如此繼續(xù)下去得到點列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿足的關(guān)系式;
(Ⅲ)求數(shù)列{xn}的通項公式.
分析:(Ⅰ)由y=x
3-3x
2,知y′=3x
2-6x.再由切線l
1的方程為y-(x
13-3x
12)=(3x
12-6x
1)(x-x
1)過點O(0,0),知-(x
13-3x
12)=-x
1(3x
12-6x
1),由此能求出x
1的值.
(Ⅱ)由過點P
n+1(x
n+1,y
n+1)的切線l
n+1的方程為y-(x
n+13-3x
n+12)=(3x
n+12-6x
n+1)(x-x
n+1)過點P
n(x
n,y
n),知(x
n-x
n+1)
2(x
n+2x
n+1-3)=0,由此能求出x
n與x
n+1滿足的關(guān)系式.
(Ⅲ)由
xn+1=-xn+,知
xn+1-1=-(xn-1),
∴{x
n-1}是以
x1-1=為首項,
-為公比的等比數(shù)列,由此能求出數(shù)列{x
n}的通項公式.
解答:解:(Ⅰ)∵y=x
3-3x
2,∴y′=3x
2-6x.
∵過點P
1(x
1,y
1)的切線l
1的方程為y-(x
13-3x
12)=(3x
12-6x
1)(x-x
1),
又l
1過點O(0,0),
∴-(x
13-3x
12)=-x
1(3x
12-6x
1),
∴2x
13=3x
12,∴
x1=或x
1=0.∵P
1與O不重合,
∴
x1=.(5分)
(Ⅱ)∵過點P
n+1(x
n+1,y
n+1)的切線l
n+1的方程為y-(x
n+13-3x
n+12)=(3x
n+12-6x
n+1)(x-x
n+1),
又l
n+1過點P
n(x
n,y
n),
∴x
n3-3x
n2-(x
n+13-3x
n+12)=(3x
n+12-6x
n+1)(x
n-x
n+1),
整理得(x
n-x
n+1)
2(x
n+2x
n+1-3)=0,
由已知得x
n≠x
n+1,
∴x
n+2x
n+1=3.(10分)
(Ⅲ)∵
xn+1=-xn+,
∴
xn+1-1=-(xn-1),
∴{x
n-1}是以
x1-1=為首項,
-為公比的等比數(shù)列,
∴
xn-1=(-)n-1,
即
xn=1-(-)n.(14分)
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.