已知α∈R,sin α+2cos α=,則tan 2α等于________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-3練習(xí)卷(解析版) 題型:解答題
如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的中點(diǎn).
(1)求證:B1E⊥AD1.
(2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(3)若二面角A-B1E-A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-4-2練習(xí)卷(解析版) 題型:選擇題
已知數(shù)列{an}滿足an+1=+,且a1=,則該數(shù)列的前2 013項(xiàng)的和等于( ).
A. B.3019 C.1508 D. 013
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-3-2練習(xí)卷(解析版) 題型:填空題
△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b=2,B=,C=,則△ABC的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-3-2練習(xí)卷(解析版) 題型:選擇題
已知sin 2α=,則cos2 = ( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-3-1練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=sin 在區(qū)間上的最小值為 ( ).
A.-1 B.- C. D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-2-3練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=x(ln x-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( ).
A.(-∞,0) B.(0,) C.(0,1) D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-2-1練習(xí)卷(解析版) 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且對任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-1集合等練習(xí)卷(解析版) 題型:解答題
已知0<α<,β為f(x)=cos的最小正周期,a=,b=(cos α,2),且a·b=m,求的值.2cos2α+sin 2?α+β?cos α-sin α
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com