A. | e2017f(-2017)<f(0),f(2017)>e2017f(0) | B. | e2017f(-2017)<f(0),f(2017)<e2017f(0) | ||
C. | e2017f(-2017)>f(0),f(2017)<e2017f(0) | D. | e2017f(-2017)>f(0),f(2017)>e2017f(0) |
分析 由題意,首先構(gòu)造函數(shù)F(x)=$\frac{f(x)}{{e}^{x}}$,對(duì)其求導(dǎo)并判斷單調(diào)性,利用此性質(zhì)判斷-2017,0,的函數(shù)值大。
解答 解:設(shè)F(x)=$\frac{f(x)}{{e}^{x}}$,
則F'(x)=[$\frac{f(x)}{e^x}$]'=$\frac{f'(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}=\frac{f'(x)-f(x)}{{e}^{x}}$,因?yàn)閒(x)>f'(x),
所以F'(x)<0,所以F(x)為減函數(shù),
因?yàn)?2017<0,2017>0,
所以F(-2017)>F(0),F(xiàn)(2017)<F(0),
即$\frac{f(-2017)}{{e}^{-2017}}>\frac{f(0)}{{e}^{0}}$,所以e2017f(-2017)>f(0);
$\frac{f(2017)}{{e}^{2017}}<\frac{f(0)}{{e}^{0}}$,即f(2017)<e2017f(0);
故選C.
點(diǎn)評(píng) 本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值的大;關(guān)鍵是正確構(gòu)造F(x),利用其單調(diào)性得到所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<a<2 | B. | $\frac{{3-\sqrt{17}}}{2}<a<\frac{{3+\sqrt{17}}}{2}$ | C. | a<1或a>2 | D. | a≤1或a≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橫伸長(zhǎng)到原來的2倍,再向左平移$\frac{π}{8}$ | |
B. | 橫伸長(zhǎng)到原來的2倍,再向右平移$\frac{π}{4}$個(gè) | |
C. | 橫縮短到原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$ | |
D. | 橫縮短到原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n-1}{n}$ | B. | $\frac{1}{n}$ | C. | $\frac{n}{n-1}$ | D. | $\frac{n+1}{n}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | [1,2) | C. | (2,5] | D. | [2,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π+1}{3}$ | B. | $\frac{4π+1}{3}$ | C. | $\frac{2π+3}{3}$ | D. | $\frac{2π+2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com