若實(shí)數(shù)x的取值滿足條件1≤2x
2
,求函數(shù)f(x)=log2(-3x2+x+
5
4
)
的最大值與最小值.
分析:由已知中件1≤2x
2
,我們易求出實(shí)數(shù)x的取值范圍,令U=-3x2+x+
5
4
,則我們可以求出U的取值范圍,然后根據(jù)對數(shù)函數(shù)的單調(diào)性,即可求出滿足條件的函數(shù)f(x)=log2(-3x2+x+
5
4
)
的最大值與最小值.
解答:解:1≤2x
2
?0≤x≤
1
2

U=-3x2+x+
5
4
,對稱軸為x=
1
6
∈[0,
1
2
]

則當(dāng)x=
1
6
時(shí),Umax=
4
3
;當(dāng)x=
1
2
時(shí),Umax=1
所以1≤U≤
4
3
,又y=log2U在[1,
4
3
]
上遞增
所以當(dāng)U=1即x=
1
2
時(shí),ymin=0
當(dāng)U=
4
3
x=
1
6
時(shí),ymax=log2
4
3
=2-log23
點(diǎn)評:本題考查的知識點(diǎn)是對數(shù)函數(shù)的值域與最值,其中利用指數(shù)函數(shù)的單調(diào)性根據(jù)已知求出滿足條件的x的取值范圍,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、若函數(shù)y=f(x)滿足:①對任意的a、b∈R恒有f(a+b)=f(a)+f(b)+2ab;②y=f(x)圖象的一條對稱軸方程是x=k;③y=f(x)在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)a∈ (
3
2
 , 3)
),當(dāng)n為奇數(shù)時(shí),動點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn)D(2,
2
)
,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于
2
3
3
,求實(shí)數(shù)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島二模)已知函數(shù)f(x)=
1
3
x3-ax2+(a2-1)x+ln(a+1)
(其中a為常數(shù))
(Ⅰ)若f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍;
(Ⅱ)若存在一條與y軸垂直的直線和函數(shù)Γ(x)=f(x)-(a2-1)x+lnx的圖象相切,且切點(diǎn)的橫坐標(biāo)x0滿足x0>2,求實(shí)數(shù)a的取值范圍;
(Ⅲ)記函數(shù)y=f(x)的極大值點(diǎn)為m,極小值點(diǎn)為n,若2m+5n≥
3
sinx
cosx+2
對于x∈[0,π]恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案