設(shè)f(x)是定義在R上的恒不為零的函數(shù),對任意實(shí)數(shù)x,y∈R,都有f(x)•f(y)=f(x+y),若a1=
1
2
,an=f(n)(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn的取值范圍是( 。
A、[
1
2
,2)
B、[
1
2
,2]
C、[
1
2
,1)
D、[
1
2
,1]
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:根據(jù)f(x)•f(y)=f(x+y),令x=n,y=1,可得數(shù)列{an}是以
1
2
為首項(xiàng),以
1
2
為等比的等比數(shù)列,進(jìn)而可以求得Sn,進(jìn)而Sn的取值范圍.
解答: 解:∵對任意x,y∈R,都有f(x)•f(y)=f(x+y),
∴令x=n,y=1,得f(n)•f(1)=f(n+1),
an+1
an
=
f(n+1)
f(n)
=f(1)=
1
2
,
∴數(shù)列{an}是以
1
2
為首項(xiàng),以
1
2
為等比的等比數(shù)列,
∴an=f(n)=(
1
2
n,
∴Sn=
1
2
(1-
1
2n
)
1-
1
2
=1-(
1
2
n∈[
1
2
,1).
故選C.
點(diǎn)評:本題主要考查了等比數(shù)列的求和問題,解題的關(guān)鍵是根據(jù)對任意x,y∈R,都有f(x)•f(y)=f(x+y)得到數(shù)列{an}是等比數(shù)列,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=2,AB⊥AC,M、N分別是CC1、BC的中點(diǎn),點(diǎn)P在線段A1B1上,且
A1P
A 1B1

(1)證明:無論λ取何值,總有AM⊥PN;
(2)當(dāng)λ=
1
2
時,求平面PMN與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(0,1),(
2
,0),(0,-2)
,O為坐標(biāo)原點(diǎn),動點(diǎn)P滿足|
CP
|=1
,則|
OA
+
OB
+
OP
|
的最小值是( 。
A、4-2
3
B、
3
+1
C、
3
-1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知A為鈍角,且2asinB=
3
b.
(1)求∠A的大小;
(2)若a2-b2=2c,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上點(diǎn)M(x,4)(x>0)到準(zhǔn)線的距離是5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)執(zhí)行如圖所示程序框圖,若輸入的x的值為M點(diǎn)的橫坐標(biāo),請根據(jù)輸出的i的值,求圓錐曲線C:
x2
i-3
+
y2
8-i
=1的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-an(n∈N+).
(1)求證:數(shù)列{an-1}為等比數(shù)列,并寫出{an}的通項(xiàng)公式;
(2)設(shè)bn=a(an-1)-(2n+1)(a為常數(shù)).若b3>0,當(dāng)且僅當(dāng)a=3時,|bn|取到最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一排有6個座位,三個同學(xué)隨機(jī)就坐,任何兩人不相鄰的坐法種數(shù)為( 。
A、120B、36C、24D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投三次,某同學(xué)在A處的命中率為p,在B處的命中率為q,該同學(xué)選擇先在A處投一球,以后都在B處投,用X表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
X02345
PP1P2P3P4P5
(1)若p=0.25,P1=0.03,求該同學(xué)用上述方式投籃得分是5分的概率
(2)若該同學(xué)在B處連續(xù)投籃3次,投中一次得2分,用Y表示該同學(xué)投籃結(jié)束后所得的總分,試比較E(X)與E(Y)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x<0時,函數(shù)f(x)=(2a-1)x的值恒大于1,則實(shí)數(shù)a的取值范圍是(  )
A、(
1
2
,1)
B、(1,2)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

同步練習(xí)冊答案