【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

【答案】C

【解析】

由頻率分布直方圖得的性質(zhì)求出;樣本數(shù)據(jù)低于130分的頻率為:的頻率為,的頻率為由此求出總體的中位數(shù)保留1位小數(shù)估計為:分;樣本分布在的頻數(shù)一定與樣本分布在的頻數(shù)相等,總體分布在的頻數(shù)不一定與總體分布在的頻數(shù)相等.

由頻率分布直方圖得:

,

解得,故A錯誤;

樣本數(shù)據(jù)低于130分的頻率為:,故B錯誤;

的頻率為:

的頻率為:

總體的中位數(shù)保留1位小數(shù)估計為:分,故C正確;

樣本分布在的頻數(shù)一定與樣本分布在的頻數(shù)相等,

總體分布在的頻數(shù)不一定與總體分布在的頻數(shù)相等,故D錯誤.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,角的對邊分別為.

(1)求角的大;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,若的中點.

(1)證明:平面;

(2)求異面直線所成角;

(3)設(shè)線段上有一點,當與平面所成角的正弦值為時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟價值是種植乙水果經(jīng)濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,在直徑上,且

1)若米,求的長;

2)設(shè), 求該空地產(chǎn)生最大經(jīng)濟價值時種植甲種水果的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國好聲音( )》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

(1)求選出的兩人導(dǎo)師為其轉(zhuǎn)身的人數(shù)和為4的概率;

(2)記選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)之和為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足當點在圓上運動時,記點的軌跡為曲線

求曲線的方程;

已知直線與曲線交于兩點,點關(guān)于軸的對稱點為,設(shè),證明:直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為, 為焦點是的拋物線上一點, 為直線上任一點, 分別為橢圓的上,下頂點,且三點的連線可以構(gòu)成三角形.

(1)求橢圓的方程;

(2)直線與橢圓的另一交點分別交于點,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某自動包裝機包袋的食鹽中,隨機抽取袋作為樣本,按各袋的質(zhì)量(單位: )分成四組, ,相應(yīng)的樣本頻率分布直方圖如圖所示.

Ⅰ)估計樣本的中位數(shù)是多少?落入的頻數(shù)是多少?

Ⅱ)現(xiàn)從這臺自動包裝機包袋的大批量食鹽中,隨機抽取,表示食鹽質(zhì)量屬于的袋數(shù),依樣本估計總體的統(tǒng)計思想,的分布列及期望.

查看答案和解析>>

同步練習(xí)冊答案