在數(shù)列{an}中,已知a1=1,a2=3,an+2= 3an+1- 2an.

(1)證明數(shù)列{ an+1- an}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=,{bn}的前n項(xiàng)和為Sn,求證

 

【答案】

⑴an=a1+(a2-a1)+ (a3-a2)+…+(an- an-1)=1+2+22+…+2n-1==2n-1;

⑵bn==log22n=n,Sn=,

,

所以

=2<2.

 

【解析】本題是中檔題,考查等差數(shù)列的基本性質(zhì),考查計(jì)算能力,利用數(shù)列的前3項(xiàng)是等比數(shù)列建立方程是解題的關(guān)鍵.本題第二小題借用(1)結(jié)論用解方程組的方法求出數(shù)列通項(xiàng),設(shè)計(jì)巧妙,值得借鑒

(1)由an+2= 3an+1- 2an得an+2- an+1= 2(an+1- an),a2-a1=2,

所以,{ an+1- an}是首項(xiàng)為2,公比為2的等比數(shù)列,從而得到結(jié)論。

(2)因?yàn)閎n=n,那么結(jié)合已知關(guān)系式得到裂項(xiàng)求和,從而求解得到結(jié)論。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=
1
4
,
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅲ)設(shè)cn=
3
bnbn+1
,Sn是數(shù)列{cn}的前n項(xiàng)和,求使Sn
m
20
對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想數(shù)列{an}的通項(xiàng)公式an的表達(dá)式;
(2)用適當(dāng)?shù)姆椒ㄗC明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個(gè)位數(shù)(n∈N*),若數(shù)列{an}的前k項(xiàng)和為2011,則正整數(shù)k之值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)在數(shù)列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)記bn=(an-
1
2
2,n∈N+,求證:數(shù)列{bn}是等差數(shù)列;
(2)求{an}的通項(xiàng)公式;
(3)對(duì)?k∈N+,是否總?m∈N+使得an=k?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)計(jì)算a2,a3
(Ⅱ)求證:{
an-
1
2
3n
}是等差數(shù)列;
(Ⅲ)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案