在數(shù)列{an}中,已知a1=1,a2=3,an+2= 3an+1- 2an.
(1)證明數(shù)列{ an+1- an}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,{bn}的前n項(xiàng)和為Sn,求證
⑴an=a1+(a2-a1)+ (a3-a2)+…+(an- an-1)=1+2+22+…+2n-1==2n-1;
⑵bn==log22n=n,Sn=,
,
所以
=2<2.
【解析】本題是中檔題,考查等差數(shù)列的基本性質(zhì),考查計(jì)算能力,利用數(shù)列的前3項(xiàng)是等比數(shù)列建立方程是解題的關(guān)鍵.本題第二小題借用(1)結(jié)論用解方程組的方法求出數(shù)列通項(xiàng),設(shè)計(jì)巧妙,值得借鑒
(1)由an+2= 3an+1- 2an得an+2- an+1= 2(an+1- an),a2-a1=2,
所以,{ an+1- an}是首項(xiàng)為2,公比為2的等比數(shù)列,從而得到結(jié)論。
(2)因?yàn)閎n=n,那么結(jié)合已知關(guān)系式得到裂項(xiàng)求和,從而求解得到結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
4 |
an+1 |
an |
1 |
4 |
1 |
4 |
3 |
bn•bn+1 |
m |
20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
an | 1+2an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
an+1+an-1 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
7 |
2 |
an-
| ||
3n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com