若橢圓的離心率為,一個焦點恰好是拋物線的焦點,則橢圓的標(biāo)準(zhǔn)方程為          .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)若雙曲線
x2
a2
-
y2
9
=1
(a>0)的一條漸近線方程為3x-2y=0,則以雙曲線的頂點和焦點分別為焦點和頂點的橢圓的離心率為
2
13
13
2
13
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•佛山一模)已知雙曲線的頂點與焦點分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構(gòu)成的四邊形恰為正方形,則橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的一條準(zhǔn)線與x軸的交點為P,點A為其短軸的一個端點,若PA的中點在橢圓C上,則橢圓的離心率為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知橢圓的離心率為,一條準(zhǔn)線

(1)求橢圓的方程;

(2)設(shè)O為坐標(biāo)原點,上的點,為橢圓的右焦點,過點FOM的垂線與以OM為直徑的圓交于兩點.

①若,求圓的方程;

②若l上的動點,求證:點在定圓上,并求該定圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省、海門中學(xué)、天一中學(xué)高三聯(lián)考數(shù)學(xué) 題型:解答題

(本小題滿分16分)

已知橢圓的離心率為,一條準(zhǔn)線

(1)求橢圓的方程;

(2)設(shè)O為坐標(biāo)原點,上的點,為橢圓的右焦點,過點FOM的垂線與以OM為直徑的圓交于兩點.

        ①若,求圓的方程;

②若l上的動點,求證點在定圓上,并求該定圓的方程.

 

查看答案和解析>>

同步練習(xí)冊答案