函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,且|x1|<|x2|,則有( 。
精英家教網(wǎng)
A、a>0,b>0,c<0,d>0B、a<0,b>0,c<0,d>0C、a>0,b<0,c>0,d<0D、a<0,b<0,c>0,d>0
分析:由圖知二個零點x1,x2.從而得導(dǎo)函數(shù)f′(x)=3ax2+2bx+c的圖象是開口向下、與x軸交于點(x1,0)、(x2,0)的拋物線,又由圖得a<0,從而可以判斷a,b,c的符號,再由圖象與y軸的交點即可得到d的符號.
解答:解:由圖象可知:
x (-∞,x2 x2 (x2,x1 x1 (x1,+∞)
f(x) 極小值 極大值
f′(x) - 0 + 0 -
則導(dǎo)函數(shù)f′(x)=3ax2+2bx+c的圖象是開口向下、與x軸交于點(x1,0)、(x2,0)的拋物線
故a<0,
又由x2<0,x1>0,且|x1|<|x2|知:x1+x2=-
2b
3a
<0,x1x2=
c
3a
<0
∴b<0,c>0,
又由圖象可知,f(0)=d>0,
則a<0,b<0,c>0,d>0,
故選:D.
點評:本題考查函數(shù)的零點,三次函數(shù)的圖象,以及利用圖象解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′.
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π12
)=1
;
③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009!.
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點”的充要條件.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知函數(shù)f(x)=ax3-6ax2+b(x∈[-1,2])的最大值為3,最小值為-29,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標(biāo)
 

(2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實數(shù)a等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時,取值精確到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì):
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)在[0.55,0.6]上是否存在零點,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案