【題目】已知函數(shù)f(x)= sinxcosx﹣sin2x+
(1)求f(x)的最小正周期值;
(2)求f(x)的單調遞增區(qū)間;
(3)求f(x)在[0, ]上的最值及取最值時x的值.

【答案】
(1)解:f(x)= sinxcosx﹣sin2x+ =

= = = ,

,

∴f(x)的最小正周期是π


(2)解:由(1)得 ,(k∈Z),

,(k∈Z),

∴f(x)的單調遞增區(qū)間為: ,k∈Z


(3)解:∵x∈[0, ],

∈[ , ].

故當 = 時,即 時,f(x)有最大值,最大值為1,

故當 = 時,即 時,f(x)有最小值,最小值為﹣1.


【解析】(1)利用二倍角的正弦和余弦公式,及兩角和的正弦公式,化簡函數(shù)f(x),再由正弦函數(shù)的周期性得答案;(2)由正弦函數(shù)的單調性得答案;(3)由x∈[0, ],得到 ∈[ , ],再求f(x)在區(qū)間[0, ]上的最大值和最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2017黑龍江雙鴨山市四模如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上所有的點

A. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

B. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變

C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函數(shù)f(x)圖象上的任意兩條對稱軸之間距離的最小值是
(1)求函數(shù)f(x)的解析式;
(2)若f( )= <α< ),求cos(α+ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn , bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Dn;
(3)設cn=ansin2 ,求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E,F(xiàn)為CD上任意兩點,且EF的長為定值b,則下面的四個值中不為定值的是(

A.點P到平面QEF的距離
B.三棱錐P﹣QEF的體積
C.直線PQ與平面PEF所成的角
D.二面角P﹣EF﹣Q的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,AB為正方體的兩個頂點,M,NQ為所在棱的中點,則在這四個正方體中,直接AB與平面MNQ不平行的是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每隔30 min從該生產線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內依次抽取的16個零件的尺寸:

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經計算得 , ,其中為抽取的第個零件的尺寸,

(1)求 的相關系數(shù),并回答是否可以認為這一天生產的零件尺寸不隨生產過程的進行而系統(tǒng)地變大或變小(若,則可以認為零件的尺寸不隨生產過程的進行而系統(tǒng)地變大或變。

(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查.

(。⿵倪@一天抽檢的結果看,是否需對當天的生產過程進行檢查?

(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產線當天生產的零件尺寸的均值與標準差.(精確到0.01)

附:樣本 的相關系數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.

(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點,EF⊥平面PCD,求直線PB與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點且B1M=2,點N在線段A1D上,A1D⊥AN.
(1)求直線A1D與AM所成角的余弦值;
(2)求直線AD與平面ANM所成角的余弦值.

查看答案和解析>>

同步練習冊答案