平面直角坐標(biāo)系中,已知點(diǎn)A(1,-2),B(4,0),P(a,1),N(a+1,1),當(dāng)四邊形PABN的周長(zhǎng)最小時(shí),過(guò)三點(diǎn)A、P、N的圓的圓心坐標(biāo)是______.
四邊形PABN的周長(zhǎng)為
C=|PA|+|AB|+|BN|+|NP|=
(a-1)2+(1+2)2
+
(4-1)2+(0+2)2
+
(a-3)2+(1-0)2
+1
=
(a-1)2+(1+2)2
+
(a-3)2+(1-0)2
+
13
+1,
只需求出
(a-1)2+(1+2)2
+
(a-3)2+(1-0)2
的最小值時(shí)的a值.
由于
(a-1)2+(1+2)2
+
(a-3)2+(1-0)2
=
(a-1)2+(0-3)2
+
(a-3)2+(0-1)2
,
表示x軸上的點(diǎn)(a,0)與(1,3)和(3,1)距離之和,只需該距離之和最小即可.
利用對(duì)稱的思想,可得該距離之和的最小值為(1,-3)與(3,1)間的距離,
且取得最小的a值為E(1,-3)與F(3,1)確定的直線與x軸交點(diǎn)的橫坐標(biāo),
∵直線EF的斜率k=
1+3
3-1
=2,∴直線EF方程為y+3=2(x-1),化簡(jiǎn)得y=2x-5,
令y=0,得x=
5
2
,所以此時(shí)a值為
5
2

由以上的討論,得四邊形PABN的周長(zhǎng)最小時(shí),P(
5
2
,1),N(
7
2
,1)
設(shè)過(guò)三點(diǎn)A、P、N的圓方程為x2+y2+Dx+Ey+F=0
可得
12+(-2)2+D-2E+F=0
(
5
2
)
2
+12+
5
2
D+E+F=0
(
7
2
)2+12+
7
2
D+E+F=0
,解之得D=-6,E=
9
4
,F(xiàn)=
11
2

∴過(guò)三點(diǎn)A、P、N的圓方程為x2+y2-6x+
9
4
y+
11
2
=0,可得圓坐標(biāo)為(3,-
9
8

故答案為:(3,-
9
8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知單位圓與x軸正半軸交于A點(diǎn),圓上一點(diǎn)P(
1
2
,
3
2
)
,則劣弧
AP
的弧長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),向量
e
=(0,1),點(diǎn)B為直線x=-1上的動(dòng)點(diǎn),點(diǎn)C滿足2
OC
=
OA
+
OB
,點(diǎn)M滿足
BM
•e=0
,
CM
AB
=0

(1)試求動(dòng)點(diǎn)M的軌跡E的方程;
(2)試證直線CM為軌跡E的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知四點(diǎn)A(2,-3),B(4,1),C(3,9),D(-1,1)
(1)AB與CD平行嗎?并說(shuō)明理由
(2)AB與AD垂直嗎?并說(shuō)明理由
(3)求角∠ADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知直線l過(guò)點(diǎn)A(2,0),傾斜角為
π2

(1)寫(xiě)出直線l的參數(shù)方程;
(2)若有一極坐標(biāo)系分別以直角坐標(biāo)系的原點(diǎn)和x軸非負(fù)半軸為原點(diǎn)和極軸,并且兩坐標(biāo)系的單位長(zhǎng)度相等,在極坐標(biāo)系中有曲線C:ρ2cos2θ=1,求直線l截曲線C所得的弦BC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•瀘州一模)平面直角坐標(biāo)系中,已知A(1,2),B(2,3).
(I)求|
AB
|的值;
(Ⅱ)設(shè)函數(shù)f(x)=x2+1的圖象上的點(diǎn)C(m,f(m))使∠CAB為鈍角,求實(shí)數(shù)m取值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案