(1)證明:顯然0是函數(shù)f(x)的零點,令g(x)=2(e
x-1)-x,則g′(x)=2e
x-1
令g′(x)=0,則x=ln
,∴函數(shù)在(-∞,ln
)單調(diào)遞減,在(ln
,+∞)上單調(diào)遞增
∵0是函數(shù)g(x)的零點,0∈(-∞,ln
),g(ln
)<0
∴函數(shù)g(x)在(ln
,+∞)上有一個零點
∴函數(shù)f(x)有且只有兩個零點;
(2)證明:函數(shù)y=g(x)上取點(x,y),則關于直線x=l對稱的點為(2-x,y),
∵函數(shù)h(x)=-
f(-x)-
x
2+x=xe
-x,∴y=e
2-x,
令F(x)=h(x)-g(x)=xe
-x-e
2-x,則F′(x)=e
-x-xe
-x-e
2-x,
∴x>1時,F(xiàn)′(x)>0,∴F(x)>F(1)=0,∴當x>l時,h(x)>g(x);
(3)解:不妨設A(x
1,y
1),B(x
2,y
2),C(x,y),
h′(x)=(1-x)e
-x,當h′(x)>0,即x>1時,h(x)為增函數(shù);當h′(x)<0,即x<1時,h(x)為減函數(shù),
∴函數(shù)在x=1處取得極大值
①若(x
1-1)(x
2-1)=0,由h(x
1)=h(x
2),得x
1=x
2,與x
1≠x
2矛盾;
②若(x
1-1)(x
2-1)>0,由h(x
1)=h(x
2),得x
1=x
2,與x
1≠x
2矛盾;
根據(jù)①②可得(x
1-1)(x
2-1)<0,不妨設x
1<1,x
2>1
由(2)可知h(x
2)>g(x
2)=h(2-x
2),∴h(x
1)=h(x
2)>g(x
2)=h(2-x
2),
∵x
2>1,∴2-x
2<1
∵x
1<1,h(x)在(-∞,1)上為增函數(shù)
∴x
1>2-x
2,∴x
1+x
2>2,∴x>1
∴線段AB的中點C不屬于集合M.
分析:(1)顯然0是函數(shù)f(x)的零點,令g(x)=2(e
x-1)-x,證明函數(shù)g(x)在(ln
,+∞)上有一個零點即可;
(2)根據(jù)函數(shù)y=g(x)的圖象與函數(shù)h(x)=-
f(-x)-
x
2+x的圖象關于直線x=l對稱,可得函數(shù)y=g(x)的解析式,構造F(x)=h(x)-g(x),確定單調(diào)性,即可得到結論;
(3)h′(x)=(1-x)e
-x,確定函數(shù)的單調(diào)性,可得函數(shù)在x=1處取得極大值,進而判斷(x
1-1)(x
2-1)<0,不妨設x
1<1,x
2>1,利用h(x
2)>g(x
2)=h(2-x
2),即可得到結論.
點評:本題考查導數(shù)知識的運用,考查函數(shù)的零點,考查不等式的證明,考查學生分析解決問題的能力,難度大.