已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.
(1)是單調(diào)遞增區(qū)間,是單調(diào)遞減區(qū)間.(2).

試題分析:(1)本題較為簡(jiǎn)單,屬于常規(guī)題型,遵循“求導(dǎo)數(shù),解不等式,定單調(diào)區(qū)間”等步驟.
(2)由于在區(qū)間[0,2]上恒有,所以,只需確定的最小值,是此最小值不小于,建立的不等式,確定得到的范圍. 對(duì)的取值情況進(jìn)行分類討論,確定函數(shù)的最小值,是解題的關(guān)鍵.
試題解析:(1)
  4分
上都單調(diào)遞增,在上單調(diào)遞減;  6分
(2)為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),  8分
①當(dāng)時(shí),函數(shù)上的最小值為
,即,又
    11分
②當(dāng)時(shí),函數(shù)上的最小值為
,又,    14分
綜上,.    15分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

預(yù)計(jì)某地區(qū)明年從年初開(kāi)始的前個(gè)月內(nèi),對(duì)某種商品的需求總量 (萬(wàn)件)近似滿足:N*,且
(1)寫(xiě)出明年第個(gè)月的需求量(萬(wàn)件)與月份 的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過(guò)萬(wàn)件;
(2)如果將該商品每月都投放到該地區(qū)萬(wàn)件(不包含積壓商品),要保證每月都滿足供應(yīng), 應(yīng)至少為多少萬(wàn)件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若在上至少存在一點(diǎn),使得成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是定義在R上的可導(dǎo)函數(shù),且滿足,對(duì)于任意的正數(shù),下面不等式恒成立的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知都是定義在上的函數(shù),,,,,在有窮數(shù)列中,任意取正整數(shù),則前項(xiàng)和大于的概率是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)的導(dǎo)函數(shù),則使得函數(shù)單調(diào)遞減的一個(gè)充分不必要條件是(    )
A.(0,1)B.[0,2]C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案