17、如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn).
(1)求證:CD⊥PD;
(2)求證:EF∥平面PAD、
分析:本題是高考的重要內(nèi)容,幾乎年年考,次次有:(1)的關(guān)鍵是找出直角三角形,也就是找出圖中的線線垂直.(2)的關(guān)鍵是找出平面PAD中可能與EF平行的直線.
解答:解:(1)證明:
∵PA⊥平面ABCD,而CD?平面ABCD,
∴PA⊥CD,又CD⊥AD,AD∩PA=A,
∴CD⊥平面PAD,∴CD⊥PD、
(2)取CD的中點(diǎn)G,連接EG、FG.
∵E、F分別是AB、PC的中點(diǎn),
∴EG∥AD,F(xiàn)G∥PD,
∴平面EFG∥平面PAD,
又∵EF?平面EFG,
∴EF∥平面PAD.
點(diǎn)評(píng):線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).
判斷或證明線面平行的常用方法有:①利用線面平行的定義(無(wú)公共點(diǎn));②利用線面平行的判定定理(a∥α,b?α,a∥b?a∥α);③利用面面平行的性質(zhì)定理(α∥β,a?α?a∥β);④利用面面平行的性質(zhì)(α∥β,a?β,a∥α?a∥β).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC上一點(diǎn),且PA∥平面BDM.
(1)求證:M為PC中點(diǎn);
(2)求平面ABCD與平面PBC所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.
(1)求證:CM∥平面PAD;
(2)點(diǎn)C到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣東)如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PD⊥平面ABCD,E為PC的中點(diǎn).
求證:
(1)PA∥平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=2AB=2,M為PD上的點(diǎn),若PD⊥平面MAB
(I)求證:M為PD的中點(diǎn);
(II)求二面角A-BM-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案