設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求證:.

(1);(2)詳見解析.

解析試題分析:(1)在的關(guān)系式中,先利用這一特點(diǎn),令代入式子中求出的值,然后令,由求出的表達(dá)式,然后就的值是否符合的通項(xiàng)進(jìn)行檢驗(yàn),從而最終確定數(shù)列的通項(xiàng)公式;(2)先求出數(shù)列的通項(xiàng)公式,根據(jù)通項(xiàng)公式的特點(diǎn)利用等差數(shù)列求和公式求出,然后根據(jù)數(shù)列的通項(xiàng)公式的特點(diǎn)選擇裂項(xiàng)法求和,從而證明相應(yīng)不等式.
試題解析:(1)當(dāng)時(shí),
當(dāng)時(shí),,此式對(duì)也成立.

(2)證明:設(shè),則
所以是首項(xiàng)為,公差為的等差數(shù)列.
,

.
考點(diǎn):1.定義法求數(shù)列通項(xiàng);2.等差數(shù)列求和;3.裂項(xiàng)法求和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,已知,.
(1)求;
(2)若從中抽取一個(gè)公比為的等比數(shù)列,其中,且,.
①當(dāng)取最小值時(shí),求的通項(xiàng)公式;
②若關(guān)于的不等式有解,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是公差大于零的等差數(shù)列,已知.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:的前項(xiàng)和為。
(Ⅰ)求;
(Ⅱ)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,數(shù)列的前n項(xiàng)和
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè), 求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公差不為零的等差數(shù)列的前3項(xiàng)和,且、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)的和;
(2)設(shè)的前n項(xiàng)和,證明:;
(3)對(duì)(2)問中的,若對(duì)一切恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列、滿足,且,其中為數(shù)列的前項(xiàng)和,又,對(duì)任意都成立。
(1)求數(shù)列、的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列分別為等比,等差數(shù)列,數(shù)列的前n項(xiàng)和為,且,,成等差數(shù)列,,數(shù)列中,,
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,求滿足不等式的最小正整數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案