設平面區(qū)域D是由雙曲線數(shù)學公式的兩條漸近線和拋物線y2=-8x的準線所圍成的三角形(含邊界與內(nèi)部).若點(x,y)∈D,則目標函數(shù)z=x+y的最大值為________.

3
分析:根據(jù)雙曲線的漸近線公式和拋物線準線的公式,求出三條直線方程,從而得到可行域是圖中△ABO及其內(nèi)部,然后利用直線平移法,即可求得目標函數(shù)z=x+y的最大值.
解答:∵雙曲線-=1的漸近線方程為
∴雙曲線的兩條漸近線為:
∵拋物線y2=-2px的準線為x=,
∴拋物線y2=-8x的準線為x=2,
因此作出三條直線,得可行域是△ABO及其內(nèi)部(如圖)
將直線l:z=x+y,即y=-x+z進行平移,可得
當直線y=-x+z過點A(2,1)時,目標函數(shù)z=x+y有最大值
∴zmax=F(2,1)=2+1=3.
故答案為:3
點評:本題以簡單的線性規(guī)劃為載體,求目標函數(shù)的最大值,著重考查了雙曲線、拋物線的標準方程和基本概念和簡單的線性規(guī)劃等知識,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年新疆烏魯木齊地區(qū)高三第一次診斷性測驗文科數(shù)學試卷(解析版) 題型:選擇題

設平面區(qū)域D是由雙曲線的兩條漸近線和拋物線y2 ="-8x" 的準線所圍成的三角形(含邊界與內(nèi)部).若點(x,y) ∈ D,則x+ y的最小值為

A.-1               B.0                C.1                D.3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆云南省高三上期中理科數(shù)學試卷(解析版) 題型:選擇題

設平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當時,的最大值為(    )

    A.8                B.0                C.-2               D.16

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年遼寧省、莊河高中高三上學期期末理科數(shù)學 題型:選擇題

設平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部.當時,的最大值是                        

    A.24        B.25       C.4       D.7

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三下學期3月月考數(shù)學理卷 題型:選擇題

設平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當時,的最大值為(   )

A.24                             B.25                                 C.4                                   D.7

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三下學期3月月考數(shù)學理卷 題型:選擇題

設平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當時,的最大值為(   )

A.24                             B.25                                 C.4                                   D.7

 

查看答案和解析>>

同步練習冊答案