已知雙曲線C:x2-
y2
2
=1
,過點(diǎn)P(-1,-2)的直線交C于A,B兩點(diǎn),且點(diǎn)P為線段AB的中點(diǎn).
(1)求直線AB的方程;
(2)求弦長|AB|的值.
解(1)設(shè)A(x1,y1),B(x2,y2),則x1+x2=-2,y1+y2=-4,
x12-
y12
2
=1
,x22-
y22
2
=1
作差得(x1+x2)(x1-x2)-
1
2
(y1+y2)(y1-y2)=0,
∴kAB=
y1-y2
x1-x2
=1,
∴直線AB方程為y=x-1.
(2)把y=x-1代入x2-
y2
2
=1
,消去y得x2+2x-3=0
∴x1=1,x2=-3,從而得|AB|=
1+1
•|x1-x2|=4
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,點(diǎn)E在線段AB的延長線上.若曲線段DE(含兩端點(diǎn))為某曲線L上的一部分,且曲線L上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
(1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線L的方程;
(2)根據(jù)曲線L的方程寫出曲線段DE(含兩端點(diǎn))的方程;
(3)若點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn),試求|MC|+|MA|的最小值,并求出取得最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意點(diǎn),直線DP交x軸于點(diǎn)N直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m,證明2m-k為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,長軸長為4
5
,直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)若直線l不經(jīng)過橢圓上的點(diǎn)M(4,1),求證:直線MA,MB的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
4
+y2=1的左、右頂點(diǎn)分別為A、B,圓x2+y2=4上有一動點(diǎn)P,P在x軸上方,C(1,0),直線PA交橢圓E于點(diǎn)D,連結(jié)DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面積S;
(Ⅱ)設(shè)直線PB,DC的斜率存在且分別為k1,k2,若k1=2k2,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
4
+y2=1
,過點(diǎn)M(-1,0)作直線l交橢圓于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)求AB中點(diǎn)P的軌跡方程;
(2)求△OAB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l與雙曲線
x2
2
-y2=1
的同一支相交于A,B兩點(diǎn),線段AB的中點(diǎn)在直線y=2x上,則直線AB的斜率為( 。
A.4B.2C.
1
2
D.
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)A(0,2)可以作 ______條直線與雙曲線x2-
y2
4
=1
有且只有一個公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px焦點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△ABO為( 。
A.銳角三角形B.直角三角形C.不確定D.鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案