下列函數(shù)中既不是奇函數(shù)也不是偶函數(shù)的是(  )
A、y=2|x|
B、y=-x3
C、y=2-x+2x
D、y=lg
1
x+1
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用是奇函數(shù)或是偶函數(shù)的必要條件是定義域關(guān)于原點(diǎn)得出,即可得出.
解答: 解:對(duì)于D:∵y=lg
1
x+1
的定義域?yàn)閇-1,+∞),關(guān)于原點(diǎn)不對(duì)稱,
∴此函數(shù)既不是奇函數(shù)也不是偶函數(shù).
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是首項(xiàng)大于零的等比數(shù)列,則“a1>a2”是“數(shù)列{an}為遞減數(shù)列”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
、
b
滿足|
a
|=1,|
a
+
b
|=3,則|
b
|的取值范圍為( 。
A、[1,2]
B、[0,4]
C、[1,3]
D、[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中B=
π
3
且sinA:sinC=3:1,則b:c的值為(  )
A、
3
B、
7
C、2
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-4x2+4ax-4a-a2(a<0)在區(qū)間[0,1]有最大值-12,則實(shí)數(shù)a等于( 。
A、-6B、-5C、-4D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<x<
π
2
,且t是大于O的常數(shù),f(x)=
1
sinx
+
t
1-sinx
的最小值為9,則t的值為(  )
A、4
B、3
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={1,m,4},B={3,4},則“m=2”是“A∩B={4}”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且過(guò)點(diǎn)P(1,
3
2

(Ⅰ)橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F2的直線l與橢圓C交于M,N兩點(diǎn).
(1)當(dāng)直線l的傾斜角為45°時(shí),求|MN|的長(zhǎng);
(2)求△MF1N的內(nèi)切圓的面積的最大值,并求出當(dāng)△MF1N的內(nèi)切圓的面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|x3-7x2+14x-8=0},B={x|x3+2x2-c2x-2c2=0,c>0}
(1)求A,B的各個(gè)元素;
(2)以集合A∪B的任意元素a,b作為二次方程x2+px+q=0的兩個(gè)根,在f(x)=x2+px+q的最小值中,求出最大的a,b的值或最小的a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案