分析 (1)分別求出關(guān)于p,q的集合A、B,根據(jù)p是q的充分不必要條件,得到A是B的真子集,求出m 的范圍即可;
(2)根據(jù)¬p是¬q的充分不必要條件,得到B是A的真子集,求出m的范圍即可.
解答 解:(1)設(shè)條件p的解集是集合A,
則A={x|-1<x<2},
設(shè)條件q的解集是集合B,
則B={x|-2m-1<x<m+1},
若p是q的充分不必要條件,則A是B的真子集,
∴$\left\{\begin{array}{l}{m+1≥2}\\{-2m-1≤-1}\\{m>-\frac{2}{3}}\end{array}\right.$,
解得:m≥1;
(2)若¬p是¬q的充分不必要條件,
則B是A的真子集,
∴$\left\{\begin{array}{l}{m+1≤2}\\{-2m-1≥-1}\\{m>-\frac{2}{3}}\end{array}\right.$,
解得:-$\frac{2}{3}$<m≤0.
點評 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{4}$或$\frac{{3\sqrt{3}}}{4}$ | C. | $\frac{{27\sqrt{3}}}{4}$ | D. | $\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com