若某空間幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、3B、4C、6D、12
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:根據(jù)幾何體的三視圖,得出該幾何體是水平放置的直四棱錐,結合三視圖中的數(shù)據(jù),求出它的體積即可.
解答: 解:根據(jù)幾何體的三視圖,得;
該幾何體是水平放置的直四棱錐,
且四棱錐的底面是邊長為2、3的矩形,高為2,
如圖所示;
∴該四棱錐的體積為
V四棱錐=
1
3
×2×3×2=4.
故選:B.
點評:本題考查了利用空間幾何體的三視圖求幾何體的體積的問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,m和n都是實數(shù),且m(1+i)=
3
+m,則(
m+ni
m-ni
2015=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

每年暑假期間,安徽衛(wèi)視播出的《男生女生向前沖》闖關節(jié)目都非;穑J關規(guī)則為:如果單人通過所有關卡達到終點,則可獲得一臺空調(diào),今年高考結束夠,高三某班學生為了放松一下,挑選了3名男生.3名女生組成男生隊與女生隊兩個隊伍參加這檔節(jié)目,3名男生能成功到達終點得概率分別為
1
4
,
1
5
1
6
.3名女生體質(zhì)差不多,每位女生能成功到達終點得概率均為
1
5
(男生和女生之間沒有影響)
(1)求男生隊沒有獲得空調(diào)且女生隊獲得三臺空調(diào)的概率;
(2)設男生隊獲得空調(diào)的臺數(shù)為ξ,求ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=|2x-1|-2a有兩個零點,則a應滿足的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),且x∈[-1,1]時,f(x)=1-x2,已知函數(shù)g(x)=
lgx,x>0
-
1
x
,x<0
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若θ∈(
π
2
,π),
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos(θ+
π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-2)2+y2=2,若直線l與圓C相切,且在兩坐標軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+3ax2+3bx+c在x=2處有極值,其圖象在x=1處的切線與直線6x+2y+5=0平行.
(Ⅰ)求a,b的值和函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈[1,3]時,f(x)>1-4c2恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
x+y-2≥0
3x-2y-6≤0
y≥k
,且z=x+3y的最小值為4,則k=
 

查看答案和解析>>

同步練習冊答案