在數(shù)列{an}中,a1=1,an+1=2an+2n
(Ⅰ)求證:數(shù)列{}是等差數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:對(duì)任意的n∈N+,Sn+1-4an是一個(gè)常數(shù).
【答案】分析:(I)將等式an+1=2an+2n兩邊同時(shí)除以2n+1,然后化簡(jiǎn)整理,根據(jù)等差數(shù)列的定義可判定;
(Ⅱ)根據(jù)(I)求出數(shù)列{an}的通項(xiàng)公式,然后利用錯(cuò)位相消法求數(shù)列{an}的前n項(xiàng)和為Sn,最后再判定對(duì)任意的n∈N+,Sn+1-aan是否是一個(gè)常數(shù).
解答:解:(I)∵a1=1,an+1=2an+2n
===
∴數(shù)列{}是以=為首項(xiàng),為公差的等差數(shù)列
(Ⅱ)由(I),知=+(n-1)=
∴an=n•2n-1
∴Sn=1•2+2•21+3•22+…+n•2n-1
∴2Sn=1•21+2•22+3•23+…+(n-1)•2n-1+n•2n
由②-①,可得Sn=n•2n-(1+2+22+…2n-1)=(n-1)•2n+1
∴Sn+1-4an=n•2n+1+1-4n•2n-1=1,故結(jié)論成立.
點(diǎn)評(píng):本題主要考查了等差關(guān)系的確定,以及數(shù)列的遞推關(guān)系和利用錯(cuò)位相消法求數(shù)列的和,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案