【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).

(1)若,證明:函數(shù)必有局部對稱點(diǎn);

(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)上有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2);(3)

【解析】

試題分析:(1)利用題中所給的定義,通過二次函數(shù)的判別式大于0,證明二次函數(shù)有局部對稱點(diǎn);(2)利用方程有解通過換元,轉(zhuǎn)化為打鉤函數(shù)有解問題利用函數(shù)的圖象,確定實(shí)數(shù)c的取值范圍;(3)利用方程有解,通過換元,轉(zhuǎn)化為二次函數(shù)在給定區(qū)間有解建立不等式組,通過解不等式組求得實(shí)數(shù)的取值范圍.

試題解析:(1)由=,代入得,

=,得到關(guān)于的方程=).

其中,由于,所以恒成立,

所以函數(shù)=)必有局部對稱點(diǎn).

(2)方程=在區(qū)間上有解,于是,

設(shè)),,,

其中,所以.

(3),由于,

所以=.

于是=(*)在上有解.

),則,

所以方程(*)變?yōu)?/span>=在區(qū)間內(nèi)有解,

需滿足條件:.

,,化簡得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級240名學(xué)生進(jìn)行一次測試,共5道客觀題,測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如表所示:

題號

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機(jī)抽取了20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如表:

(Ⅰ)根據(jù)題中數(shù)據(jù),估計(jì)中240名學(xué)生中第5題的實(shí)測答對人數(shù);

(Ⅱ)從抽樣的20名學(xué)生中隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對的人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅲ)試題的預(yù)估難度和實(shí)測難度之間會有偏差.設(shè)為第題的實(shí)測難度,請用設(shè)計(jì)一個(gè)統(tǒng)計(jì)量,并制定一個(gè)標(biāo)準(zhǔn)來判斷本次測試對難度的預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等腰的底邊,高,點(diǎn)是線段上異于點(diǎn)的動點(diǎn),點(diǎn)邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.

(1)的表達(dá)式;(2)當(dāng)為何值時(shí), 取得最大,并求最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)當(dāng)=1時(shí),判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;

(3)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的中心為點(diǎn), 邊所在的直線方程為.

1邊所在的直線方程和正方形外接圓的方程;

2若動圓過點(diǎn),且與正方形外接圓外切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個(gè)長方形,并且的平分線平行,設(shè).

(1)試將長方形的面積表示為的函數(shù);

2若將長方形彎曲,使重合焊接制成圓柱的側(cè)面,當(dāng)圓柱側(cè)面積最大時(shí),求圓柱的體積(假設(shè)圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個(gè)圓面作為圓柱的一個(gè)底面,請問是否可行?并說明理由.

(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車是碳排放量比較大的交通工具,某地規(guī)定,從2017年開始,將對二氧化碳排放量超過130 g/km的輕型汽車進(jìn)行懲罰性征稅,檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進(jìn)行二氧化碳排放量檢測,記錄如下(單位:g/km):

80

110

120

140

150

100

120

x

100

160

經(jīng)測算得乙品牌輕型汽車二氧化碳排放量的平均值為=120 g/km.

(1)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;

(2)從被檢測的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過130 g/km的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn),是以為底邊的等腰三角形,點(diǎn)在直線:上.

(1)求邊上的高所在直線的方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,f(x)= ,若不等式f(x)+f(2x)≤k對于任意的x∈R恒成立,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案