已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的四個側(cè)面中的最大面積是( 。
A、6
B、8
C、2
5
D、3
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由已知的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,分別計算出四個側(cè)面的側(cè)面積,可得答案.
解答: 解:因為三視圖復原的幾何體是四棱錐,頂點在底面的射影是底面矩形的長邊的中點,底面邊長分別為4,2,
后面是等腰三角形,腰為3,所以后面的三角形的高為:
32-22
=
5
,
所以后面三角形的面積為:
1
2
×4×
5
=2
5

兩個側(cè)面面積為:
1
2
×2×3=3,
前面三角形的面積為:
1
2
×4×
5
2
+22
=6,
四棱錐P-ABCD的四個側(cè)面中面積最大的是前面三角形的面積:6.
故選:A.
點評:本題考查的知識點是由三視圖求體積和表面積,解決本題的關鍵是得到該幾何體的形狀.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示直三棱柱ABG-DCE中ABCD是邊長為2的正方形,DE⊥平面ABCD,F(xiàn)為AG的中點,BE與平面ABCD所成角的正切值為
2
2

(1)求證:AC∥平面EFB;
(2)求二面角F-BE-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行六面體ABCD-A1B1C1D1中,
AC1
=x
AB
+2y
AD
+3z
AA1
,則x+y+z=( 。
A、
11
6
B、
7
6
C、
5
6
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點F(-c,0)(c>0)作圓x2+y2=
a2
4
的切線,切點為E,延長FE交雙曲線右支于點P,若E為線段PF的中點,則雙曲線的離心率等于(  )
A、
10
B、
10
5
C、
10
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( 。
 
A、100 cm3
B、108 cm3
C、84 cm3
D、92 cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為2的正方體內(nèi)有一四面體A-BCD,其中B,C分別為正方體兩條棱的中點,其三視圖如圖所示,則四面體A-BCD的體積為( 。
A、
8
3
B、2
C、
4
3
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>0,a>0)的兩條漸近線為l1,l2,過右焦點F作垂直l1的直線交l1,l2于A,B兩點,若|OA|,|AB|,|OB|成等差數(shù)列,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=sin(
π
4
x-
π
6
)-2cos2
πx
8
+1=
 
,最大值
 
,最小值
 
,最小正周期
 
,單調(diào)遞增區(qū)間
 
,單調(diào)遞減區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對一切實數(shù)x,不等式ax2-ax-2<0恒成立,則實數(shù)a的取值范圍是( 。
A、[-8,0]
B、(-8,0)
C、(-8,0]
D、[0,8)

查看答案和解析>>

同步練習冊答案