【題目】已知拋物線Ey22pxp0)的焦點為F,以F為圓心,3p為半徑的圓交拋物線EP,Q兩點,以線段PF為直徑的圓經(jīng)過點(0,﹣1),則點F到直線PQ的距離為_____

【答案】

【解析】

由題意設(shè)以F為圓心,3p為半徑的圓的方程與拋物線聯(lián)立求出P,Q的坐標(biāo),再由以線段PF為直徑的圓經(jīng)過點D0,﹣1)可得0,求出p的值,進(jìn)而求出F的坐標(biāo)及直線PQ的方程,求出F到直線PQ的距離.

由題意可得以F為圓心,3p為半徑的圓的方程為:(x2+y2=(3p2,

與拋物線方程聯(lián)立,,整理可得4x2+4px350,所以可得x,代入拋物線的方程可得y±p,

不妨設(shè)Pp),Qp),所以直線PQx,

因為以線段PF為直徑的圓經(jīng)過點D0,﹣1),所以0

即(1,p+1)=0,

整理可得:5p24p+40,所以p

所以F,0),直線PQ的方程為:x,

所以點F到直線PQ的距離為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考察正方體6個面的中心,甲從這6個點中任意選兩個點連成直線,乙也從這6個點中任意選兩個點連成直線,則所得的兩條直線相互平行但不重合的概率等于( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SPTP的斜率之積為.

1)求動點P的軌跡E的方程;

2)設(shè)點B為軌跡Ey軸正半軸的交點,是否存在直線l,使得l交軌跡EMN兩點,且F(10)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且Snnn+2)(nN*).

1)求數(shù)列{an}的通項公式;

2)設(shè)bn,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,點是圓內(nèi)一個定點,點是圓上任意一點,線段的重直平分線與半徑相交于點

1)求動點的軌跡的方程;

2)給定點,若過點的直線與軌跡相交于兩點(均不同于點).證明:直線與直線的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價的出售,當(dāng)顧客在商場內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎券:

消費(fèi)金額(元)的范圍

獲得獎券的金額(元)

30

60

100

130

根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標(biāo)價為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標(biāo)價),試問:

1)若購買一件標(biāo)價為1000元的商品,顧客得到的優(yōu)惠率是多少?

2)對于標(biāo)價在(元)內(nèi)的商品,顧客購買標(biāo)價為多少元的商品,可得到不小于的優(yōu)惠率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明:

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知拋物線的焦點為,上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時,為正三角形.

)求的方程;

)若直線,且有且只有一個公共點,

)證明直線過定點,并求出定點坐標(biāo);

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,橢圓上的點到左焦點的距離的最大值為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線與橢圓交于、兩點.在軸上是否存在點,使得,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案