8.若f(x)=x2-2x-3,x∈[-2,5].
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的最大值與最小值;
(3)若m+f(x)≤0恒成立,求m取值范圍.

分析 (1)求出函數(shù)f(x)的對(duì)稱軸,得到函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)f(x)的最大值和最小值即可;
(3)問(wèn)題轉(zhuǎn)化為m≤-f(x)的最小值,從而求出m的范圍即可.

解答 解:(1)f(x)=x2-2x-3,x∈[-2,5].
∴f(x)=(x-1)2-4,x∈[-2,5],
對(duì)稱軸x=1,
f(x)在[-2,1]遞減,在(1,5]遞增;
(2)由(1)得:
f(x)的最小值是f(1)=-4,
f(x)的最大值是f(5)=12;
(3)若m+f(x)≤0恒成立,
則m≤-f(x)的最小值,
故m≤-12.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如果存在非零常數(shù)C,對(duì)于函數(shù)y=f(x)定義域上的任意x,都有f(x+C)>f(x)成立,那么稱函數(shù)為“Z函數(shù)”.
(Ⅰ)若g(x)=2x,h(x)=x2,試判斷函數(shù)g(x)和h(x)是否是“Z函數(shù)”?若是,請(qǐng)證明:若不是,主說(shuō)明理由:
(Ⅱ)求證:若y=f(x)(x∈R)是單調(diào)函數(shù),則它是“Z函數(shù)”;
(Ⅲ)若函數(shù)f(x)=ax3+2x2+3是“Z函數(shù)”,求實(shí)數(shù)a滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|x2-9≥0},B={x||x-4|<2},C={x|$\frac{x-8}{x+2}$<0}.
(1)求A∩B、A∪C;
(2)若全集U=R,求∁UA∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(Ι)已知:復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,z1•z2是實(shí)數(shù),求z2
(Ⅱ)已知:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程是y=$\sqrt{3}x$,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=2sin(2x-\frac{π}{3})+2$.
(1)求f(x)的對(duì)稱中心.(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{π}{2}$]時(shí)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a>0,函數(shù)f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在區(qū)間$(0,\frac{1}{2}]$上至少存在一個(gè)實(shí)數(shù)x0,使f(x0)>g(x0)成立,則a的取值范圍是( 。
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知F1和F2是兩個(gè)定點(diǎn),橢圓C1與等軸雙曲線C2(實(shí)軸長(zhǎng)等于虛軸長(zhǎng))都以F1、F2為焦點(diǎn),點(diǎn)P是C1與C2的一個(gè)交點(diǎn),且∠F1PF2=90°,則橢圓C1的離心率是$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.將圓x2+y2=1上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)過(guò)點(diǎn)$N(\sqrt{3},0)$的直線l與C的交點(diǎn)為A,B,與y軸交于點(diǎn)M,且$\overrightarrow{AM}={λ_1}\overrightarrow{AN}$,$\overrightarrow{BM}={λ_2}\overrightarrow{BN}$,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知tanα=3,計(jì)算$\frac{3sinα+cosα}{sinα-2cosα}$;
(2)若cos(α+β)=$\frac{1}{5}$,cos(α-β)=$\frac{3}{5}$,求tanα•tanβ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案