已知圓C與圓相交,所得公共弦平行于已知直線 ,又圓C經(jīng)過點A(-2,3),B(1,4),求圓C的方程。

 

【答案】

所求圓C的方程為

 

【解析】本試題主要是考查圓圓位置關系的運用,以及直線與圓的位置關系的運用。

由已知得圓C的弦AB的中點坐標,以及圓C的弦AB的垂直平分線方程,那么得到圓心的坐標,和兩圓連心線所在直線的方程,那么可以解得。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-6x-4y+4=0,直線l1被圓所截得的弦的中點為P(5,3).
①求直線l1的方程.
②若直線l2:x+y+b=0與圓C相交,求b的取值范圍.
③是否存在常數(shù)b,使得直線l2被圓C所截得的弦的中點落在直線l1上?若存在,求出b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練24練習卷(解析版) 題型:解答題

如圖所示,已知圓Cy軸相切于點T(0,2),x軸正半軸相交于兩點M,N(M在點N的右側(cè)),|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過點,.

(1)求圓C和橢圓D的方程;

(2)若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾斜角互補.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省衡水市棗強中學高一(下)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知圓C:x2+y2-6x-4y+4=0,直線l1被圓所截得的弦的中點為P(5,3).
①求直線l1的方程.
②若直線l2:x+y+b=0與圓C相交,求b的取值范圍.
③是否存在常數(shù)b,使得直線l2被圓C所截得的弦的中點落在直線l1上?若存在,求出b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省湘西州永順縣高一(上)期末數(shù)學試卷(解析版) 題型:解答題

已知圓C:x2+y2-6x-4y+4=0,直線l1被圓所截得的弦的中點為P(5,3).
①求直線l1的方程.
②若直線l2:x+y+b=0與圓C相交,求b的取值范圍.
③是否存在常數(shù)b,使得直線l2被圓C所截得的弦的中點落在直線l1上?若存在,求出b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:《第3章 直線與方程》、《第4章 圓與方程》2011年單元測試卷(解析版) 題型:解答題

已知圓C:x2+y2-6x-4y+4=0,直線l1被圓所截得的弦的中點為P(5,3).
①求直線l1的方程.
②若直線l2:x+y+b=0與圓C相交,求b的取值范圍.
③是否存在常數(shù)b,使得直線l2被圓C所截得的弦的中點落在直線l1上?若存在,求出b的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案