對于x∈R,x2-x+1>0的否定為________.

答案:
解析:

  答案:x∈R,x2-x+1≤0

  思路解析:“”的否定為“”,“>”的否定為“≤”.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②對于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,
則x<0時(shí),f′(x)>g′(x);
③函數(shù)f(x)=loga
3+x
3-x
(a>0,a≠1)
是偶函數(shù);
④若對?x∈R,函數(shù)f(x)滿足f(x+2)=-f(x),則4是該函數(shù)的一個(gè)周期,其中真命題的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①已知f(x)+2f(
1
x
)=3x
,則函數(shù)g(x)=f(2x)在(0,1)上有唯一零點(diǎn);
②對于函數(shù)f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0.則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的序號(hào)是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+(a-3)x+a.
(1)對于?x∈R,f(x)>0總成立,求a的取值范圍;
(2)當(dāng)x∈(-1,2)時(shí)f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省梅村高級(jí)中學(xué)2012屆高三12月雙周練數(shù)學(xué)試題 題型:022

給出下列四個(gè)結(jié)論:

①命題“x∈R,x2-x>0"的否定是“x∈R,x2-x≤0”;

②“若am2<bm2,則a<b”的逆命題為真;

③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);

④對于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),(x)>0,(x)>0,則x<0時(shí)(x)>(x).

其中正確結(jié)論的序號(hào)是________.(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊答案