【題目】為了了解學(xué)生的學(xué)習(xí)情況,一次測(cè)試中,科任老師從本班中抽取了n個(gè)學(xué)生的成績(jī)(滿分100分,且抽取的學(xué)生成績(jī)均在內(nèi))進(jìn)行統(tǒng)計(jì)分析.按照,,,的分組作出頻率分布直方圖和頻數(shù)分布表.

頻數(shù)分布表

x

4

10

12

8

4

1)求na,x的值;

2)在選取的樣本中,從低于60分的學(xué)生中隨機(jī)抽取兩名學(xué)生,試問這兩名學(xué)生在同一組的概率是多少?

【答案】1,,;(2

【解析】

1)根據(jù)頻數(shù)和頻率的關(guān)系,求出樣本總數(shù),求出的頻率,即可求出,再由樣本和為,求出;

2兩組中的學(xué)生人數(shù)分別為24,將6人按組編號(hào),列出從6人中抽取2人的所有基本事件,確定滿足條件的基本事件的個(gè)數(shù),由古典概型的概率公式,即可求解.

解:(1)由題意知,樣本容量,

,

,解得.

2)由頻數(shù)分布表可知

兩組中的學(xué)生人數(shù)分別為2,4,

組中的學(xué)生標(biāo)記為A,B

組中的學(xué)生標(biāo)記為a,bc,d.

在這兩組中的學(xué)生中隨機(jī)抽2名學(xué)生有如下情形:

,,,,

,,,,,,

,,共有15個(gè)基本事件.

其中兩名學(xué)生在同一組的情形:,,

,,,共有7個(gè)基本事件.

即這兩名學(xué)生在同一組的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,給出下列說法:①平行于同一個(gè)平面的兩條直線是平行直線;②垂直于同一條直線的兩個(gè)平面是平行平面;③若平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,則;④過平面的一條斜線,有且只有一個(gè)平面與平面垂直.其中正確的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面, , , 分別為線段上的點(diǎn),且 , .

1)求證 平面

2)若與平面所成的角為,求平面與平面所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>R,且對(duì)任意,有,且當(dāng)時(shí),

(1)求

(2)用定義法證明函數(shù)R上是減函數(shù);

(3)若,求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2017年,大連“蝸享出行”正式引領(lǐng)共享汽車,改變?nèi)藗儌鹘y(tǒng)的出行理念,給市民出行帶來了諸多便利該公司購(gòu)買了一批汽車投放到市場(chǎng)給市民使用據(jù)市場(chǎng)分析,每輛汽車的營(yíng)運(yùn)累計(jì)收入單位:元與營(yíng)運(yùn)天數(shù)滿足

要使?fàn)I運(yùn)累計(jì)收入高于1400元求營(yíng)運(yùn)天數(shù)的取值范圍;

每輛汽車營(yíng)運(yùn)多少天時(shí),才能使每天的平均營(yíng)運(yùn)收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門共有員工60人,為調(diào)查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眠的時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))

甲部門

6

7

8

乙部門

5.5

6

6.5

7

7.5

8

丙部門

5

5.5

6

6.5

7

8.5

(1)求該單位乙部門的員工人數(shù)?

(2)從甲部門和乙部門抽出的員工中,各隨機(jī)選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設(shè)所有員工睡眠的時(shí)間相互獨(dú)立,求A的睡眠時(shí)間不少于B的睡眠時(shí)間的概率;

(3)若將每天睡眠時(shí)間不少于7小時(shí)視為睡眠充足,現(xiàn)從丙部門抽出的員工中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。

(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角、、所對(duì)的邊分別是、,,,有以下四個(gè)命題:滿足條件的不可能是直角三角形;當(dāng)時(shí),的周長(zhǎng)為15;③當(dāng)

時(shí),若的內(nèi)心,則的面積為;④ 的面積的最大值為40.其中正確命題有__________(填寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,分別為A、BC所對(duì)的邊,且

(1)確定角C的大;

(2)若c,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案