【題目】執(zhí)行如圖的程序框圖(N∈N*),那么輸出的p是( )
A.
B.
C.
D.
【答案】C
【解析】解:第一次執(zhí)行循環(huán)體,k=1,p=A11,滿足繼續(xù)循環(huán)的條件,k=2;
第二次執(zhí)行循環(huán)體,k=2,p=A22,滿足繼續(xù)循環(huán)的條件,k=3;
第三次執(zhí)行循環(huán)體,k=3,p=A33,滿足繼續(xù)循環(huán)的條件,k=4;
第N次執(zhí)行循環(huán)體,k=N,p=ANN,滿足繼續(xù)循環(huán)的條件,k=N+1;
第N+1次執(zhí)行循環(huán)體,k=N+1,p=AN+1N+1,不滿足繼續(xù)循環(huán)的條件,
故輸出的p值為AN+1N+1,
故選:C
由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量p的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),則( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友2015年11月11日在某網(wǎng)店的網(wǎng)購情況,隨機(jī)抽查了該市100名網(wǎng)友的網(wǎng)購金額情況,得到如圖頻率分布直方圖.
(1)估計(jì)直方圖中網(wǎng)購金額的中位數(shù);
(2)若規(guī)定網(wǎng)購金額超過15千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過15千元的顧客定義為“非網(wǎng)購達(dá)人”;若以該網(wǎng)店的頻率估計(jì)全市“非網(wǎng)購達(dá)人”和“網(wǎng)購達(dá)人”的概率,從全市任意選取3人,則3人中“非網(wǎng)購達(dá)人”與“網(wǎng)購達(dá)人”的人數(shù)之差的絕對值為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足 .
(Ⅰ)求∠C的大小;
(Ⅱ)求sin2A+sin2B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x| <2x≤2},B={x|ln(x﹣ )≤0},則A∩(RB)=( )
A.
B.(﹣1, ]
C.[ ,1)
D.(﹣1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出n瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時間,等其記憶淡忘之后,再讓其品嘗這n瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試.根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評分. 現(xiàn)設(shè)n=4,分別以a1 , a2 , a3 , a4表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,
則X是對兩次排序的偏離程度的一種描述.
(Ⅰ)寫出X的可能值集合;
(Ⅱ)假設(shè)a1 , a2 , a3 , a4等可能地為1,2,3,4的各種排列,求X的分布列;
(Ⅲ)某品酒師在相繼進(jìn)行的三輪測試中,都有X≤2,
①試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨(dú)立);②你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com