分析 (Ⅰ)由題意根據點F(0,1)是線段MD的中點,求得最高點和最低點的坐標,可得A的值,再根據三角形MDC的面積為$\frac{2π}{3}$,求得ω的值,再根據特殊點的坐標求得φ的值,可得函數f(x)的解析式,再利用正弦函數的單調性,求得f(x)的解析式.
(Ⅱ)若f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,求得f(x)的最小值,可得m的取值范圍.
(Ⅲ)利用函數y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再根據g(x)的周期性求得 y=g(x)在區(qū)間[2009π,2017π]上的零點個數.
解答 解:(Ⅰ)由點F(0,1)是線段MD的中點,可知A=2,三角形MDC的面積為$\frac{1}{2}×\frac{T}{2}×2×2=\frac{2π}{3}$,
所以$T=\frac{2π}{3},ω=\frac{2π}{T}=3$,設點D(x0,2),則M(-x0,0),
∴$4({x_0}-(-{x_0}))=\frac{2π}{3},{x_0}=\frac{π}{12}$,即$D(\frac{π}{12},2)$,所以$2sin(3×\frac{π}{12}+ϕ)=2$,
∵$0<ϕ<\frac{π}{2}$,∴$ϕ=\frac{π}{4}$,所以函數f(x)的解析式$f(x)=2sin(3x+\frac{π}{4})$
由$\frac{π}{2}+2kπ≤3x+\frac{π}{4}≤\frac{3π}{2}+2kπ(k∈Z)$得$\frac{π}{4}+2kπ≤3x≤\frac{5π}{4}+2kπ(k∈Z)$
得$\frac{π}{12}+\frac{2kπ}{3}≤x≤\frac{5π}{12}+\frac{2kπ}{3}(k∈Z)$,
所以函數f(x)的單調減區(qū)間為$[\frac{π}{12}+\frac{2kπ}{3},\frac{5π}{12}+\frac{2kπ}{3}](k∈Z)$.
(Ⅱ)因為不等式f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,
所以m<(f(x))min在$x∈[{-\frac{π}{36},\frac{π}{36}}]$,∵$x∈[{-\frac{π}{36},\frac{π}{36}}]$,∴$3x+\frac{π}{4}∈[{\frac{π}{6},\frac{π}{3}}].f{(x)_{min}}=2sin\frac{π}{6}=1$,即m<1.
(Ⅲ)依題意得$g(x)=f(x+\frac{π}{6})+1=2cos(3x+\frac{π}{4})+1$,
其最小正周期$T=\frac{2π}{3}$,由$2cos(3x+\frac{π}{4})+1=0$,得$cos(3x+\frac{π}{4})=-\frac{1}{2}$,
所以$3x+\frac{π}{4}=2kπ±\frac{2π}{3},k∈Z$,即$x=\frac{2kπ}{3}+\frac{5π}{36},k∈Z$或$x=\frac{2kπ}{3}-\frac{11π}{36},k∈Z$,
區(qū)間[2009π,2017π]的長度為12個周期,
若零點不在區(qū)間的端點,則每個周期有2個零點;
若零點在區(qū)間的端點,則僅在區(qū)間左或右端點處得一個區(qū)間含3個零點,其它區(qū)間仍是2個零點;
故當$2009π≠\frac{2kπ}{3}+\frac{5π}{36},k∈Z$且$2009π≠\frac{2kπ}{3}-\frac{11π}{36},k∈Z$,故有12×2=24個.
點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由特殊點的坐標求出ω 和φ的值;正弦函數的單調性、周期性、零點,函數y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,2) | B. | $(-∞,\frac{1}{2})$ | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{4}{5}i$ | C. | $\frac{6}{5}$ | D. | $\frac{6}{5}i$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2\sqrt{7}}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{2\sqrt{19}}{3}$ | D. | $\frac{2\sqrt{13}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x-y=0 | B. | x+y=0 | C. | x+2y-3=0 | D. | (x+1)2+(y-2)2=5 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com