2、設(shè)f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,
則f2010(x)=(  )
分析:分別求出f1(x),f2(x),f3(x),f4(x),…的導(dǎo)數(shù),通過觀察發(fā)現(xiàn)fn(x)的值周期性重復(fù)出現(xiàn),周期為4,所以用2010除以4得到余數(shù)為2,所以f2010(x)=f2(x),求出即可.
解答:解:∵f1(x)=(cosx)′=-sinx,
f2(x)=(-sinx)′=-cosx,
f3(x)=(-cosx)′=sinx,
f4(x)=(sinx)′=cosx,…,
由此可知fn(x)的值周期性重復(fù)出現(xiàn),周期為4,
故f2010(x)=f2(x)=-cosx.
故選D
點(diǎn)評(píng):考查學(xué)生會(huì)進(jìn)行導(dǎo)數(shù)的運(yùn)算,會(huì)根據(jù)條件歸納總結(jié)得到結(jié)論,并利用得到的結(jié)論解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)f0(x)=cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N*,則f2011(x)=


  1. A.
    -sin x
  2. B.
    -cos x
  3. C.
    sin x
  4. D.
    cos x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)推理與證明專項(xiàng)訓(xùn)練(河北) 題型:選擇題

設(shè)f0(x)=cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn1(x)=fn′(x),n∈N*,則f2011(x)=(  )

A.-sin x                 B.-cos x

C.sin x                    D.cos x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年廣東省高二第二學(xué)期3月月考數(shù)學(xué)文卷 題型:選擇題

設(shè)f0(x)=cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N*,則f2011(x)=(  )

A.-sin x      B.-cos x       C.sin x        D.cos x

 

查看答案和解析>>

同步練習(xí)冊(cè)答案