精英家教網 > 高中數學 > 題目詳情
13.已知x∈(0,π),sin($\frac{π}{3}$-x)=cos2($\frac{x}{2}$+$\frac{π}{4}$),則tanx等于( 。
A.$\frac{1}{2}$B.-2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

分析 由條件利用三角恒等變換化簡條件,求得tanx的值.

解答 解:∵x∈(0,π),sin($\frac{π}{3}$-x)=cos2($\frac{x}{2}$+$\frac{π}{4}$)=$\frac{1+cos(x+\frac{π}{2})}{2}$=$\frac{1-sinx}{2}$,
即 $\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx=$\frac{1-sinx}{2}$,∴tanx=$\sqrt{2}$.
故選:D.

點評 本題主要考查三角恒等變換,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.設命題p:?x>0,xex>0,則¬p為( 。
A.?x≤0,xex≤0B.?x0≤0,x0ex0≤0C.?x>0,xex≤0D.?x0>0,x0ex0≤0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若集合A={x∈N|5+4x-x2>0},B={y|y=4-x,x∈A},則A∪B等于( 。
A.BB.{1,2,4}C.{1,2,3,4}D.{-1,0,1,2,3,4}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若函數f(x)=x2-2bx+b2-1在區(qū)間[0,1]上恰有一個零點,則b的取值范圍是( 。
A.[-1,1]B.[-2,2]C.[-2,-1]∪[0,1]D.[-1,0]∪[1,2]

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.如果實數x,y滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=$\frac{1}{y-2x}$的最大值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.設集合M={x|x2-$\frac{x}{2}$>0},N={x|lgx≤0},則M∩N=( 。
A.[0,1]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.已知O為坐標原點,A,B,C是圓O上的三點,若$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),|$\overrightarrow{BC}$|=2,過點D(2,0)的直線l與圓O相切,則直線l的方程是x+$\sqrt{3}$y-2=0或x-$\sqrt{3}$y-2=0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,當輸出i的值是4時,輸入≤的整數n的最大值是( 。
A.22B.23C.24D.25

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=$\sqrt{3}{cos^2}$x-sinxcos(π-x),x∈R.
(Ⅰ)求f(x)的最小正周期及單調區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案