分析 (1)根據(jù)向量數(shù)量積的坐標(biāo)公式結(jié)合三角函數(shù)的輔助角公式進(jìn)行化簡,結(jié)合周期公式建立方程進(jìn)行求解;
(2)根據(jù)三角函數(shù)的不等式,結(jié)合余弦函數(shù)的圖象和性質(zhì)解不等式即可.
解答 解:(1)∵$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),
∴$f(x)=-\sqrt{3}sinωx•cosωx+{cos^2}ωx$=$\frac{1}{2}(cos2ωx-\sqrt{3}sin2ωx)+\frac{1}{2}$=$cos(2ωx+\frac{π}{3})+\frac{1}{2}$,
∵f(x)的最小正周期為π,
∴T=$\frac{2π}{2ω}$=π,得ω=1.
(2)∵f(x)≥1,
∴由(1)得$cos(2x+\frac{π}{3})≥\frac{1}{2}$,
即-$\frac{π}{3}$+2kπ≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{3}$,k∈Z,
解得$kπ-\frac{π}{3}≤x≤kπ$,k∈Z.
即不等式的解集是[-$\frac{π}{3}$+kπ,kπ],k∈Z.
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用以及向量與三角函數(shù)的綜合,利用輔助角公式進(jìn)行化簡結(jié)合周期求出ω的值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | 1 | C. | -i | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≥-2} | B. | {x|-2<x<2} | C. | {x|-2≤x<2} | D. | {x|x<2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com