設(shè)過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F2為雙曲線的右焦點.|PQ|=7,則△F2PQ的周長為(  )

(A)19 (B)26 (C)43 (D)50

 

【答案】

B

【解析】如圖,由雙曲線的定義可得:

兩式相加得|PF2|+|QF2|-|PQ|=4a,

∴△F2PQ的周長為|PF2|+|QF2|+|PQ|=4a+|PQ|+|PQ|=4×3+2×7=26.

故選B.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)四點A、B、C、D均在雙曲線x2-y2=1的右支上.
(1)若
AB
=λ
CD
(實數(shù)λ≠0),證明:
OA
OB
=
OC
OD
(O是坐標(biāo)原點);
(2)若|AB|=2,P是線段AB的中點,過點P分別作該雙曲線的兩條漸近線的垂線,垂足為M、N,求四邊形OMPN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F(xiàn)2為雙曲線的右焦點.若PQ=7,則△F2PQ的周長為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F(xiàn)2為雙曲線的右焦點.若PQ=7,則△F2PQ的周長為


  1. A.
    19
  2. B.
    26
  3. C.
    43
  4. D.
    50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西師大附中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:選擇題

設(shè)過雙曲線x2-y2=9左焦點F1的直線交雙曲線的左支于點P,Q,F(xiàn)2為雙曲線的右焦點.若PQ=7,則△F2PQ的周長為( )
A.19
B.26
C.43
D.50

查看答案和解析>>

同步練習(xí)冊答案