已知α∈R,sin α+2cos α=,則tan 2α等于( ).
A. B. C.- D.-
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評3練習(xí)卷(解析版) 題型:選擇題
在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是( ).
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}是首項為,公比為的等比數(shù)列,設(shè)bn+15log3an=t,常數(shù)t∈N*.
(1)求證:{bn}為等差數(shù)列;
(2)設(shè)數(shù)列{cn}滿足cn=anbn,是否存在正整數(shù)k,使ck,ck+1,ck+2按某種次序排列后成等比數(shù)列?若存在,求k,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練8練習(xí)卷(解析版) 題型:選擇題
已知非零向量a,b,c滿足a+b+c=0,向量a與b的夾角為60°,且|a|=|b|=1,則向量a與c的夾角為( ).
A.30° B.60° C.120° D.150°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:填空題
如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登400米到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登800米方到達(dá)C處,則索道AC的長為______米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練18練習(xí)卷(解析版) 題型:解答題
某商場為吸引顧客消費(fèi)推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費(fèi)滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進(jìn)行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實(shí)線處,則重新轉(zhuǎn)動).若顧客在一次消費(fèi)中多次中獎,則對其獎勵進(jìn)行累加.已知顧客甲到該商場購物消費(fèi)了268元,并按照規(guī)則參與了促銷活動.
(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練18練習(xí)卷(解析版) 題型:選擇題
已知隨機(jī)變量X~N(1,4)且P(X<2)=0.72,則P(1<X<2)等于( ).
A.0.36 B.0.16 C.0.22 D.0.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練16練習(xí)卷(解析版) 題型:填空題
已知點(diǎn)F是雙曲線=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對角線AC與BD的交點(diǎn),M是PD的中點(diǎn),AB=2,∠BAD=60°.
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC;
(3)當(dāng)四棱錐P-ABCD的體積等于時,求PB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com