• 已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點(diǎn),若P1是線段AB的中點(diǎn).
    (Ⅰ)求a1,b1的值;
    (Ⅱ)點(diǎn)P1,P2,P3,…,Pn,…能否共線?證明你的結(jié)論;
    (Ⅲ)證明:對(duì)于給定的公差不零的{an},都能找到唯一的一個(gè){bn},使得P1,P2,P3,…,Pn,…,都在一個(gè)指數(shù)函數(shù)的圖象上.
    【答案】分析:(Ⅰ)P1是線段AB的中點(diǎn),,且不共線,由平面向量基本定理,能求出a1,b1的值.
    (Ⅱ) 由,設(shè){an}的公差為d,{bn}的公比為q,則由于P1,P2,P3,…,Pn,…互不相同,所以d=0,q=1不會(huì)同時(shí)成立;若d=0,則,所以P1,P2,P3,…,Pn,…都在直線上.由此能求出當(dāng)d≠0且q≠1時(shí),P1,P2,P3,…,Pn,…不共線. 
    (Ⅲ)設(shè)Pn(an,bn)都在指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象上,則.令n=1,則,于是,有唯一解.由此能夠得到當(dāng)對(duì)于給定的{an},都能找到唯一的一個(gè){bn},使得P1,P2,P3,…,Pn,…,都在指數(shù)函數(shù)的圖象上.
    解答:解:(Ⅰ)P1是線段AB的中點(diǎn)…(1分)
    ,且不共線,
    由平面向量基本定理,知:…(3分)
    (Ⅱ) 由
    設(shè){an}的公差為d,{bn}的公比為q,則由于P1,P2,P3,…,Pn,…互不相同,所以d=0,q=1不會(huì)同時(shí)成立; (4分)
    若d=0,則,⇒P1,P2,P3,…,Pn,…都在直線上;           …(5分)
    若q=1,則為常數(shù)列,⇒P1,P2,P3,…,Pn,…都在直線上;             …(6分)
    若d≠0且q≠1,P1,P2,P3,…,Pn,…共線?=(an-an-1,bn-bn-1)與共線(n>1,n∈N*)?(an-an-1)(bn+1-bn)-(an+1-an)(bn-bn-1)=0?d(bn+1-bn)-d(bn-bn-1)=0?(bn+1-bn)=(bn-bn-1)?q=1與q≠1矛盾,
    ∴當(dāng)d≠0且q≠1時(shí),P1,P2,P3,…,Pn,…不共線.      …(9分)
    (Ⅲ)設(shè)Pn(an,bn)都在指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象上,則(10分)
    令n=1,則,…(11分)
    于是,有唯一解,…(13分)
    由于d≠0,⇒q≠1,從而滿足條件“P1,P2,P3,…,Pn,…互不相同”.
    ∴當(dāng)對(duì)于給定的{an},都能找到唯一的一個(gè){bn},
    使得P1,P2,P3,…,Pn,…,都在指數(shù)函數(shù)的圖象上.…(14分)
    點(diǎn)評(píng):本題考查數(shù)列與解析幾何間的關(guān)系,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動(dòng)點(diǎn),連接BC并延長(zhǎng)至D,使得|CD|=|BC|,求AC與OD的交點(diǎn)P的軌跡方程.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知點(diǎn)A(-1,0),B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足
    OPn
    =an
    OA
    +bn
    OB
    (n∈N*)
    ,O為坐標(biāo)原點(diǎn),其中an、bn分別為等差數(shù)列和等比數(shù)列,若P1是線段AB的中點(diǎn),設(shè)等差數(shù)列公差為d,等比數(shù)列公比為q,當(dāng)d與q滿足條件
     
    時(shí),點(diǎn)P1,P2,P3,…,Pn,…共線.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知點(diǎn)A(-1,0),B(1,0),M是平面上的一動(dòng)點(diǎn),過M作直線l:x=4的垂線,垂足為N,且|MN|=2|MB|.
    (1)求M點(diǎn)的軌跡C的方程;
    (2)當(dāng)M點(diǎn)在C上移動(dòng)時(shí),|MN|能否成為|MA|與|MB|的等比中項(xiàng)?若能求出M點(diǎn)的坐標(biāo),若不能說明理.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    點(diǎn)A到圖形C上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)A到圖形C的距離.已知點(diǎn)A(1,0),圓C:x2+2x+y2=0,那么平面內(nèi)到圓C的距離與到點(diǎn)A的距離之差為1的點(diǎn)的軌跡是(  )

    查看答案和解析>>

    同步練習(xí)冊(cè)答案