從一批含有13件正品與2件次品的產(chǎn)品中,不放回地任取3件,求取得次品數(shù)的分布列及數(shù)學期望.
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:由題設(shè)知ξ的所有可能取值為0,1,2,分別求出相對應(yīng)的概率,由此能求出取得次品數(shù)的分布列及數(shù)學期望.
解答: 解:由題設(shè)知ξ的所有可能取值為0,1,2,
P(ξ=0)=
13
15
×
12
14
×
11
13
=
22
35

P(ξ=1)=
13
15
×
12
14
×
2
13
+
13
15
×
2
14
×
12
13
+
2
15
×
13
14
×
12
13
=
12
35
,
P(ξ=2)=
13
15
×
2
14
×
1
13
+
2
15
×
13
14
×
1
13
+
2
15
×
1
14
×
13
13
=
1
35

∴ξ的分布列為:
 ξ  0  2
 P  
22
35
 
12
35
 
1
35
Eξ=
22
35
+1×
12
35
+2×
1
35
=
2
5
點評:本題考查離散型隨機變量的分布列和數(shù)學期望,是歷年高考的必考內(nèi)容之一,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

甲、乙、丙三名畢業(yè)生參加某公司人力資源部安排的面試,三人依次進行,每次一人,其中甲、乙兩人相鄰的概率為( 。
A、
1
3
B、
2
3
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過坐標原點O和點(2,2),且圓心在x軸上.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線l經(jīng)過點(1,2),且l與圓C相交所得弦長為2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=x|x-a|(x∈R).
(1)當a=2時,畫出函數(shù)y=f(x)的大致圖象;

(2)當a=2時,根據(jù)圖象寫出函數(shù)y=f(x)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程f(x)+1=a解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,a2=3,a6=11
(1)求通項公式an;
(2)設(shè)bn=2an,求數(shù)列bn的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx-x2+ax(a∈R).
(Ⅰ)當a=2時,求f(x)的圖象在x=1處的切線方程;
(Ⅱ)若函數(shù)g(x)=f(x)-ax+m在[
1
e
,e]上有兩個零點,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)f(x)的圖象與x軸有兩個不同的交點A(x1,0),B(x2,0),且0<x1<x2,求證:f′(
x1+x2
2
)<0(其中f′(x)是f(x)的導函數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aln(x+1),g(x)=x-
1
2
x2,a∈R.
(Ⅰ)若a=-1,求曲線y=f(x)在x=3處的切線方程;
(Ⅱ)若對任意的x∈[0,+∞),都有f(x)≥g(x)恒成立,求a的最小值;
(Ⅲ)設(shè)p(x)=f(x-1),a>0,若A(x1,y1),B(x2,y2)為曲線y=p(x)的兩個不同點,滿足0<x1<x2,且?x3∈(x1,x2),使得曲線y=f(x)在x3處的切線與直線AB平行,求證:x3
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}單調(diào)遞增,a1=1,且a2,a3+4,2a7+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的公差d
(2)令bn=
1
an
+
an+1
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lnan,b3=18,b6=12,則數(shù)列{bn}前n項和的最大值為
 

查看答案和解析>>

同步練習冊答案