如圖,已知圓E ,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)點,,點G是軌跡上的一個動點,直線AG與直線相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結論.
(1)點Q的軌跡的方程為為.(2)以線段BD為直徑的圓與直線GF相切.

試題分析:(1)連結QF,由于線段的垂直平分線上的點到線段兩端點的距離相等,所以|QE|+|QF|=|QE|+|QP|=4,根據(jù)橢圓的定義知,動點Q的軌跡是以E,F(xiàn)為焦點,長軸長為4的橢圓.由此便可得其方程;(2)直線與圓的位置關系一般通過比較圓心到直線的距離與圓的半徑的大小關系來確定. 由題意,設直線AG的方程為,則點D坐標為,由此可得圓心和半徑.下面用k表示點G的坐標,求出直線GF方程為,進而求到圓心到直線GF的距離便可知道以BD為直徑的圓與直線GF的位置關系.
(1)連結QF,根據(jù)題意,|QP|=|QF|,
則|QE|+|QF|=|QE|+|QP|=4,
故Q的軌跡是以E,F(xiàn)為焦點,長軸長為4的橢圓.             .2分
設其方程為,可知,,則,         ..3分
所以點Q的軌跡的方程為為. 4分
(2)以線段BD為直徑的圓與直線GF相切. 5分

由題意,設直線AG的方程為,則點D坐標為,BD的中點H的坐標為
聯(lián)立方程組消去y得,
,則,
所以, 7分
時,點G的坐標為,點D的坐標為.
直線GF⊥x軸,此時以BD為直徑的圓與直線GF相切. 9分
時,則直線GF的斜率為,則直線GF方程為,
點H到直線GF的距離,又,
所以圓心H到直線GF的距離,此時,以BD為直徑的圓與直線GF相切.
綜上所述,以線段BD為直徑的圓與直線GF相切. 13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的中心和拋物線的頂點均為原點、的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在、上各取兩個點,將其坐標記錄于下表中:


(1)求,的標準方程;
(2)若交于C、D兩點,的左焦點,求的最小值;
(3)點上的兩點,且,求證:為定值;反之,當為此定值時,是否成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓兩點,交橢圓于另一點.

(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(,都在軸上方),且
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1、F2分別是橢圓(a>b>0)的左、右焦點,若在直線x=上存在P,使線段PF1的中垂線過點F2,則橢圓離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓E:的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為( 。
A.       B.
C.       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在區(qū)間上分別取一個數(shù),記為,則方程,表示焦點在y軸上的橢圓的概率是     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的一個焦點與拋物線的焦點重合,則該橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案