函數(shù)f(x)=sinx(1-2sin2
θ
2
)+cosxsinθ(0<θ<π)在x=π得最小值.
(Ⅰ)求θ的值;
(Ⅱ)在△ABC中,a,b,c別是角A,B,C的對邊,已知α=1,b=
3
,f(A)=
3
2
,求角C.
分析:(Ⅰ)f(x)解析式利用二倍角的余弦函數(shù)公式化簡后,再利用兩角和與差的正弦函數(shù)公式化簡,根據(jù)f(x)在x=π得最小值,即可確定出θ的值;
(Ⅱ)由第一問的f(x)解析式,以及f(A)=
3
2
,求出A的度數(shù),進而得到sinA的值,再由a,b的值,利用正弦定理求出sinB的值,確定出B的度數(shù),即可求出C的度數(shù).
解答:解:(Ⅰ)f(x)=sinxcosθ+cosxsinθ=sin(x+θ),
∵f(x)在x=π得最小值,即f(π)=sin(π+θ)=-sinθ=-1,且0<θ<π,
∴θ=
π
2
;
(Ⅱ)根據(jù)第一問及f(A)=
3
2
得:f(A)=sin(A+
π
2
)=
3
2

∴A+
π
2
=
π
3
(不合題意,舍去)或A+
π
2
=
3
,即A=
π
6

∵a=1,b=
3
,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
3
×
1
2
1
=
3
2
,
∴B=
π
3
或B=
3
,
則C=
π
2
π
6
點評:此題考查了正弦定理,二倍角的余弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知角a的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-3,
3
).
(1)定義行列式
.
ab
cd
.
=a•d-b•c,解關(guān)于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函數(shù)f(x)=sin(x+a)+cos(x+a)(x∈R)的圖象關(guān)于直線x=x0對稱,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則
( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(wx+
π
2
)(w>0),其圖象上相鄰的兩個最低點間的距離為2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
,
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•紅橋區(qū)一模)函數(shù)f(x)=sin(2ωx+
π
6
)+1(x∈R)圖象的兩相鄰對稱軸間的距離為1,則正數(shù)ω的值等于( 。

查看答案和解析>>

同步練習冊答案