20.在射擊訓(xùn)練中,某戰(zhàn)士射擊了兩次,設(shè)命題p是“第一次射擊擊中目標(biāo)”,命題q是“第二次射擊擊中目標(biāo)”,則命題“兩次射擊中至少有一次沒有擊中目標(biāo)“為真命題的充要條件是( 。
A.(¬p)∨(¬q)為真命題B.p∨(¬q)為真命題C.(¬p)∧(¬q)為真命題D.p∨q為真命題

分析 由已知,結(jié)合容斥定理,可得答案.

解答 解:∵命題p是“第一次射擊擊中目標(biāo)”,
命題q是“第二次射擊擊中目標(biāo)”,
∴命題“兩次射擊至少有一次沒有擊中目標(biāo)”(¬p)∨(¬q),
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是事件的表示,容斥定理,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2c-a=2bcosA.
(1)求角B的大;
(2)若a=2,b=$\sqrt{7}$,求c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|(x-1)(x+2)<0},N={x∈Z||x|≤2},則M∩N=( 。
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l的方程為ax+2y-3=0,且a∈[-5,4],則直線l的斜率不小于1的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,且PA=PB=PC=PD,MB=2AM,CN=2PN
(1)求證:MN∥面PAD
(2)求證:BD⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知不等式組$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{y+x-k≤0}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{4}{3}$,則實(shí)數(shù)k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì)結(jié)果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計(jì)值;
(2)若購進(jìn)這批小龍蝦100千克,試估計(jì)這批小龍蝦的數(shù)量;
(3)為適應(yīng)市場(chǎng)需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個(gè)等級(jí),如下表:
等級(jí)一等品二等品三等品
重量(g)[5,25)[25,45)[45,55]
按分層抽樣抽取10只,再隨機(jī)抽取3只品嘗,記X為抽到二等品的數(shù)量,求抽到二級(jí)品的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn)x軸的正半軸為極軸建極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ-sinθ)=4,且與曲線C相交于A,B兩點(diǎn).
(Ⅰ)在直角坐標(biāo)系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|1≤x≤4},B={x|x>2},那么A∪B=(  )
A.(2,4)B.(2,4]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案