已知圓C過定點(diǎn)F(-
1
4
,0),且與直線x=
1
4
相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(I)求曲線E的方程;
(II)當(dāng)△OAB的面積等于
10
時(shí),求k的值;
(I)由題意,點(diǎn)C到定點(diǎn)(-
1
4
,0)和直線x=
1
4
的距離相等,
所以點(diǎn)C的軌跡方程為y2=-x
(II)由方程組
y2=-x
y=k(x+1)
消去x,整理得ky2+y-k=0
設(shè)點(diǎn)A(x1,y1),B(x2,y2),則y1+y2=-
1
k
,y1y2=-1
設(shè)直線l與x軸的交點(diǎn)為N,則N(-1,0)
∵S△OAB=S△OAN+S△OBN=
1
2
|ON||y1|+
1
2
|ON||y2|=
1
2
•1•
(y1+y2)2-4y1y2
=
1
2
(
1
k
)
2
+4

∵S△OAB=
10
,求得k=±
1
6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l過拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直.l與C交于A,B兩點(diǎn),|AB|=12,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為( 。
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C的漸近線為y=±
3
x
且過點(diǎn)M(1,
2
).
(1)求雙曲線C的方程;
(2)若直線y=ax+1與雙曲線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OA與OB垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,
過F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長(zhǎng)為
10
3

(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線x=9上的點(diǎn),直線QA、QB與橢圓C分別交于點(diǎn)M、N,求證:直線MN必過x軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)訄A過定點(diǎn)D(1,0),且與直線l:x=-1相切.
(1)求動(dòng)圓圓心M的軌跡C;
(2)過定點(diǎn)D(1,0)作直線l交軌跡C于A、B兩點(diǎn),E是D點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求證:∠AED=∠BED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn),Q是雙曲線上動(dòng)點(diǎn),從左焦點(diǎn)引∠F1QF2的平分線的垂線,垂足為P,則P點(diǎn)的軌跡是( 。┑囊徊糠郑
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l與橢圓C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積S△OPQ=
6
2
,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(x,y)滿足橢圓方程2x2+y2=1,則
y
x-1
的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
3
3
,且過點(diǎn)P(
6
,1).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若直線l:y=kx+
2
與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案