函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,)的圖象如圖所示,為了得到y(tǒng)=cos2x的圖象,則只要將f(x)的圖象( )
A.向左平移個(gè)單位長(zhǎng)度
B.向右平移個(gè)單位長(zhǎng)度
C.向左平移個(gè)單位長(zhǎng)度
D.向右平移個(gè)單位長(zhǎng)度
【答案】分析:先根據(jù)圖象確定A和T的值,進(jìn)而根據(jù)三角函數(shù)最小正周期的求法求ω的值,再將特殊點(diǎn)代入求出φ值從而可確定函數(shù)f(x)的解析式,然后根據(jù)誘導(dǎo)公式將函數(shù)化為余弦函數(shù),再平移即可.
解答:解:由圖象可知A=1,T=π,∴ω==2
∴f(x)=sin(2x+φ),又因?yàn)閒()=sin(+φ)=-1
+φ=+2kπ,φ=(k∈Z)
∵|φ|,∴φ=
∴f(x)=sin(2x+)=sin(+2x-)=cos(2x-
∴將函數(shù)f(x)向左平移可得到cos[2(x+)-]=cos2x=y
故選C.
點(diǎn)評(píng):本題主要考查根據(jù)圖象求函數(shù)解析式和方法和三角函數(shù)的平移變換.根據(jù)圖象求三角函數(shù)解析式時(shí),一般先根據(jù)圖象確定A的值和最小正周期的值,進(jìn)而求出w的值,再將特殊點(diǎn)代入求φ的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為
π
2

(1)求函數(shù)f(x)的解析式和當(dāng)x∈[0,π]時(shí)f(x)的單調(diào)減區(qū)間;
(2)設(shè)a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向
平移
π
12
π
12
個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值為4,最小正周期為
3

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,若△EFG是邊長(zhǎng)為2的正三角形,則f(1)=( 。
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案