已知四邊形滿足∥,,是的中點,將沿著翻折成,使面面,為的中點.
(Ⅰ)求四棱的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)
如圖的幾何體中,平面,平面,△為等邊三角形, ,為的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求此幾何體的體積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,沿等腰直角三角形的中位線,將平面折起,平面⊥平面,得到四棱錐,,設、的中點分別為、,
(1)求證:平面⊥平面
(2)求證:
(3)求平面與平面所成銳二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)已知四邊形滿足∥,,是的中點,將沿著翻折成,使面面,為的中點.
(Ⅰ)求四棱錐的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖所示多面體中,⊥平面,為平行四邊形,分別為的中點,,,.
(1)求證:∥平面;
(2)若∠=90°,求證;
(3)若∠=120°,求該多面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com