復(fù)數(shù)z滿足z(2+i)=2i,則在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:把已知的等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得復(fù)數(shù)對應(yīng)點的坐標(biāo)得答案.
解答: 解:∵z(2+i)=2i,
z=
2i
2+i
=
2i(2-i)
(2+i)(2-i)
=
2+4i
5
=
2
5
+
4i
5

則復(fù)數(shù)z對應(yīng)的點的坐標(biāo)為(
2
5
,
4
5
),位于第一象限.
故選:A.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某市一家庭一月份、二月份、三月份天然氣用量和支付費用如下表所示:
月份用氣量(立方米)支付費用(元)
48
2038
2650
該市的家用天然氣收費方法是:天然氣費=基本費+超額費+保險費.現(xiàn)已知,在每月用氣量不超過a立方米時,只交基本費6元;用氣量超過a立方米時,超過部分每立方米付b元;每戶的保險費是每月c元(c≤5).設(shè)該家庭每月用氣量為x立方米時,所支付的天然氣費用為y元.求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是復(fù)數(shù)單位,若復(fù)數(shù)z=
1
2+i
,則|z|=( 。
A、2
B、
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={-1,0,1},集合B={x|x=t2,t∈A},用列舉法表示B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax4+bx2+c滿足f′(1)=2,則f′(-1)=(  )
A、-1B、-2C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:
sin4θ
a
+
cos4θ
b
=
1
a+b
,求證:
sin8θ
a3
+
cos8θ
b3
=
1
(a+b)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的對邊分別為a,b,c,且滿足sinB-
3
cosB=1,b=4.
(1)若∠A=
π
12
,求c.
(2)若
a
cosA
=
b
sinB
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a≥0,求函數(shù)f(x)=(sinx+a)(cosx+a)的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點的坐標(biāo)為A(2,1),B(-2,2),C(5,6).
(1)求三條邊所在直線的斜率;
(2)直線l過A點,且與線段BC相交,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案