精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=|x2-2ax+b|.x∈R,給出四個命題:
①f(x)必是偶函數;
②若f(0)=f(2),則f(x)的圖象關于直線x=1對稱;
③若a2-b≤0,則f(x)在[a,+∞)上是增函數;
④f(x)有最小值|a2-b|;⑤對任意x都有f(a-x)=f(a+x);
其中正確命題的序號是______.
對于①,當a=1、b=0時,f(x)=|x2-2x|為非奇非偶函數
故f(x)不一定是偶函數,得①不正確;
對于②,當a=0、b=-2時,f(x)=|x2-2|圖象不關于直線x=1對稱,
但是滿足f(0)=f(2)=2,得②不正確;
對于③,若a2-b≤0,函數t=x2-2ax+b根的判別式△=4a2-4b<0
因此t>0恒成立,得f(x)=x2-2ax+b,
圖象開口向上,且關于直線x=a對稱,因此f(x)在[a,+∞)上是增函數,得③正確;
對于④,當4a2-4b≥0時,f(x)=|x2-2ax+b|的最小值為0
所以f(x)的最小值不一定是|a2-b|,得④不正確;
對于⑤,因為f(a-x)=|x2-a2+b|=f(a+x),所以⑤正確;
故答案為:③⑤
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區(qū)間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案